OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1032–1041

Design guidelines for optical resonator biochemical sensors

Juejun Hu, Xiaochen Sun, Anu Agarwal, and Lionel C. Kimerling  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 1032-1041 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D * , we introduce a new sensor system figure of merit, the time-normalized sensitivity S * , to permit quantitative, cross-technology-platform comparison between resonator sensors with distinctive device designs and interrogation configurations. The functional dependence of S * on device parameters, such as resonant cavity quality factor (Q), extinction ratio, system noise, and light source spectral bandwidth, is evaluated by using a Lorentzian peak fitting algorithm and Monte Carlo simulations to provide theoretical insights and useful design guidelines for optical resonator sensors. Importantly, we find that S * critically depends on the cavity Q factor, and we develop a method of optimizing sensor resolution and sensitivity to noise as a function of cavity Q factor. Finally, we compare the simulation predictions of sensor wavelength resolution with experimental results obtained in Ge 17 Sb 12 S 71 resonators, and good agreement is confirmed.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.1545) Remote sensing and sensors : Chemical analysis

ToC Category:
Remote Sensing and Sensors

Original Manuscript: January 21, 2009
Manuscript Accepted: March 11, 2009
Published: April 16, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Juejun Hu, Xiaochen Sun, Anu Agarwal, and Lionel C. Kimerling, "Design guidelines for optical resonator biochemical sensors," J. Opt. Soc. Am. B 26, 1032-1041 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002). [CrossRef]
  2. C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610-7615 (2007). [CrossRef] [PubMed]
  4. A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006). [CrossRef]
  5. S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006). [CrossRef]
  6. A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007). [CrossRef] [PubMed]
  7. I. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319-1321 (2006). [CrossRef] [PubMed]
  8. Y. Sun, S. Shopova, G. Frye-Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788-790 (2008). [CrossRef] [PubMed]
  9. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  10. M. Lee and P. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007). [CrossRef] [PubMed]
  11. R. Boyd and J. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  12. I. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008). [CrossRef] [PubMed]
  13. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  14. C. Barrios, M. Bañuls, V. González-Pedro, K. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708-710 (2008). [CrossRef] [PubMed]
  15. B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995). [CrossRef]
  16. D.R.Linde, ed., The CRC Handbook of Chemistry and Physics (CRC Press,2005).
  17. Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994). [CrossRef]
  18. See, for example, T. Clark, M. Currie, and P. Matthews, “Digitally linearized wide-band photonic link,” J. Lightwave Technol. 19, 172-179 (2001). In practical applications, it is necessary to specify the measurement bandwidth at which the SNR is attained to obtain the S* value and an accurate description of the sensor system. [CrossRef]
  19. M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  20. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003). [CrossRef] [PubMed]
  21. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500-2502 (2008). [CrossRef] [PubMed]
  22. H. Zhu, I. White, J. Suter, P. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139-9146 (2007). [CrossRef] [PubMed]
  23. Understandably, sensors with small sensing area are advantageous in achieving a low molecular mass LOD. Nevertheless, a small sensing area (e.g., <10 μm2) often leads to inefficient molecular capturing and large statistical variations of measurement results, design trade-offs that need to be taken into account.
  24. J. Hu, V. Tarasov, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798-11807 (2007). [CrossRef] [PubMed]
  25. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33, 761-763 (2008). [CrossRef] [PubMed]
  26. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000). [CrossRef]
  27. B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997). [CrossRef] [PubMed]
  28. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  29. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995). [CrossRef]
  30. B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited