OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1042–1048

Optimal method of designing triangular-spectrum fiber Bragg gratings with low index modulation and chirp-free structure

Yongkang Gong, Aoxiang Lin, Xiaohong Hu, Leiran Wang, and Xueming Liu  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 1042-1048 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Combining the traditional nonlinear least squares (NLLS) method with a discrete layer peeling (DLP) algorithm, we propose a new method (for the first time to our knowledge) to synthesize triangular-spectrum fiber Bragg gratings (TS-FBGs) with chirp-free structures. In this method, the DLP algorithm is used to generate an appropriate initial value, and the NLLS method is successfully used to optimize the design parameters from the initial value in the previous step. Numerical results show that our method can design both single- and multiple-channel TS-FBGs with their maximum index modulations being effectively suppressed to a feasible level. These novel TS-FBGs thus designed can act as wavelength readout devices and provide potential applications to wavelength interrogation in optical sensor systems.

© 2009 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 20, 2008
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 20, 2009
Published: April 17, 2009

Yongkang Gong, Aoxiang Lin, Xiaohong Hu, Leiran Wang, and Xueming Liu, "Optimal method of designing triangular-spectrum fiber Bragg gratings with low index modulation and chirp-free structure," J. Opt. Soc. Am. B 26, 1042-1048 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Erdogan, “Fiber grating spectrum,” J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997). [CrossRef]
  3. X. Liu, “Tunable ultranarrow dual-channel filter based on sampled FBGs,” J. Lightwave Technol. 26, 1885-1890 (2008). [CrossRef]
  4. K. Senthilnathan, P. Malathi, and K. Porsezian, “Dynamics of nonlinear pulse propagation through a fiber Bragg grating with linear coupling,” J. Opt. Soc. Am. B 20, 366-372 (2003). [CrossRef]
  5. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998). [CrossRef]
  6. A. Rosenthal and M. Horowitz, “Analysis and design of nonlinear fiber Bragg gratings and their application for optical compression of reflected pulses,” Opt. Lett. 31, 1334-1336 (2006). [CrossRef] [PubMed]
  7. X. M. Liu, A. Lin, G. Sun, D. Moon, D. Hwang, and Y. Chung, “Identical-dual-bandpass sampled fiber Bragg grating and its application to ultranarrow filters,” Appl. Opt. 47, 5637-5643 (2008). [CrossRef] [PubMed]
  8. N. Burani and J. Lagsgaard, “Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 2487-2493 (2005). [CrossRef]
  9. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008). [CrossRef]
  10. D. J. F. Cooper and P. W. E. Smith, “Simple and highly sensitive method for wavelength measurement of low-power time-multiplexed signals using optical amplifiers,” J. Lightwave Technol. 21, 1612-1620 (2003). [CrossRef]
  11. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. F. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31, 1785-1787 (2006). [CrossRef] [PubMed]
  12. P. Tsai, F. G. Sun, G. Z. Xiao, Z. Y. Zhang, S. Rahimi, and D. Y. Ban, “A new fiber-Bragg-grating sensor interrogation system deploying free-spectral-range-matching scheme with high precision and fast detection rate,” IEEE Photon. Technol. Lett. 20, 300-302 (2008). [CrossRef]
  13. R. Ubang, Y. W. Zhou, H. W. Cai, R. H. Qu, and Z. J. Fang, “A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,” Opt. Commun. 229, 197-201 (2004). [CrossRef]
  14. S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260, 716-722 (2006). [CrossRef]
  15. J. C. C. Carvalho, M. J. Sousa, C. S. S. Junior, J. C. W. A. Costa, C. R. L. Frances, and M. E. V. Segatto, “A new acceleration technique for the design of fibre gratings,” Opt. Express 14, 10715-10725 (2006). [CrossRef] [PubMed]
  16. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999). [CrossRef]
  17. N. Plougmann and M. Kristensen, “Efficient iterative technique for designing Bragg gratings,” Opt. Lett. 29, 23-25 (2004). [CrossRef] [PubMed]
  18. Y. Ouyang, Y. Sheng, M. Bernier, and G. Paul, “Iterative layer-peeling algorithm for designing fiber Bragg gratings with fabrication constraints,” J. Lightwave Technol. 23, 3924-3930 (2005). [CrossRef]
  19. G. Tremblay, J. N. Gillet, Y. Sheng, M. Bernier, and G. Paul, “Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding,” J. Lightwave Technol. 23, 4382-4386 (2005). [CrossRef]
  20. C. Lee, R. Lee, and Y. Kao, “Design of multichannel DWDM fiber Bragg grating filters by Lagrange multiplier constrained optimization,” Opt. Express 14, 11002-11011 (2006). [CrossRef] [PubMed]
  21. S. Baskar, R. T. Zheng, A. Alphones, N. Q. Ngo, and P. N. Suganthan, “Particle swarm optimization for the design of low-dispersion fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 615-617 (2005). [CrossRef]
  22. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14, 1309-1311 (2002). [CrossRef]
  23. H. Li, M. Li, K. Ogusu, Y. Sheng, and J. Rothenberg, “Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings,” Opt. Express 14, 3152-3160 (2006). [CrossRef] [PubMed]
  24. K. Madsen, H. B. Nielsen, and O. Tingleff, Method for Non-linear Least Squares Problems, 2nd ed. (Informatics and Mathematical Modelling, Technical University of Denmark, 2004).
  25. J. Skaar, W. L. Gang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001). [CrossRef]
  26. X. M. Liu, Y. K. Gong, L. R. Wang, T. Wang, T. Y. Zhang, K. Q. Lu, and W. Zhao, “Identical dual-wavelength fiber Bragg gratings,” J. Lightwave Technol. 25, 2706-2710 (2007). [CrossRef]
  27. Available online at “Gauss-Newton algorithm,”http://en.wikipedia.org/wiki/Gauss-Newton_algorithm.
  28. K. Aksnes and J. Skaar, “Design of short fiber Bragg gratings by use of optimization,” Appl. Opt. 43, 2226-2230 (2004). [CrossRef] [PubMed]
  29. J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. dissertation (Norwegian University of Science and Technology, 2000).
  30. H. Chi, X. Tao, D. Yang, and K. Chen, “Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating,” Opt. Lett. 26, 1949-1951 (2001). [CrossRef]
  31. Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20, 933-935 (2008). [CrossRef]
  32. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80° tilted structures,” Opt. Lett. 31, 1193-1195 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited