OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1057–1075

Dynamics of all-optical poling of photoisomerizable molecules. I. Symmetries of tensorial properties

Michel Dumont  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 1057-1075 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001057


View Full Text Article

Enhanced HTML    Acrobat PDF (1088 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

All-optical poling (AOP) of dye molecules in polymeric materials is the result of noncentrosymmetric angular hole burning (AHB: selective depletion in the angular distribution of molecules) and of angular redistribution (AR: rotation in the reversible photoisomerization). Many publications describe successfully the photoinduced anisotropy of rodlike molecules: the cumulative building of anisotropy, after many cycles, is a necessary condition of efficiency. Other publications show the important role of the tensorial properties of molecules and fields in AOP, but they consider neither the saturation of AHB, nor AR, in multiple cycles. Here, the tensorial expression of the excitation probability, for any geometry of molecules and fields, is reevaluated (density matrix formalism) and introduced in optical pumping equations, which are solved formally (at second order) and numerically. The expected symmetries are preserved, but the saturation of optical pumping introduces new tensorial couplings, which modify χ ( 1 ) and χ ( 2 ) .

© 2009 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 30, 2008
Revised Manuscript: February 17, 2009
Manuscript Accepted: February 23, 2009
Published: April 20, 2009

Citation
Michel Dumont, "Dynamics of all-optical poling of photoisomerizable molecules. I. Symmetries of tensorial properties," J. Opt. Soc. Am. B 26, 1057-1075 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-1057


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Weigert, “Uber Einen Neuen Effect der Strahling in Lichtempfindlichen Schichten,” Verh. Dtsch. Phys. Ges. 21, 479-483 (1919).
  2. F. Weigert, “Uber einen neuen Effekt der Strahlung,” Naturwiss. 9, 30 (1921). [CrossRef]
  3. B. S. Neporent and O. V. Stolbova, “Reversible orientation photochromism in viscous solutions of complex organic substances,” Opt. Spectrosc. 14, 331-336 (1963) B. S. Neporent and O. V. Stolbova[Opt. Spektrosk. 14, 624-633 (1963) (in Russian)].
  4. A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photochromism and photoisomerization of aromatic azo compound. I. Model of the system,” Opt. Spectrosc. 31, 295-299 (1971) A. M. Makushenko, B. S. Neporent, and O. V. Stolbova[Opt. Spektrosk. 31, 557-564 (1971)].
  5. A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photochromism and photoisomerization of aromatic azo compound. II. Azobenzene and substituted azobenzene derivatives,” Opt. Spectrosc. 31, 397-401 (1971) A. M. Makushenko, B. S. Neporent, and O. V. Stolbova[Opt. Spektrosk. 31, 741-748 (1971)].
  6. Z. Sekkat and M. Dumont, “Photoassisted poling of azodye doped polymeric films at room temperature,” Appl. Phys. B 54, 486-489 (1992). [CrossRef]
  7. Z. Sekkat and M. Dumont, “Poling of polymer films by photoisomerisation of azodye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Opt. 2, 359-362 (1992).
  8. M. Dumont and Z. Sekkat, “Dynamical study of photoinduced anisotropy and orientational relaxation of azodyes in polymeric films poling at room temperature,” Proc. SPIE 1774, 188-199 (1992). [CrossRef]
  9. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second-harmonic generation in azo-dye polymers,” Opt. Lett. 18, 941-943 (1993). [CrossRef] [PubMed]
  10. C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, “Photoinduced noncentrosymmetry in azo-dye polymers,” Nonlinear Opt. 9, 339-347 (1995).
  11. C. Fiorini, “Propriétés optiques non-linéaires du second ordre induites par voie optique dans les milieux moléculaires,” Thèse de Doctorat (Université Paris 11, Orsay, 1995).
  12. A. C. Etilé, C. Fiorini, F. Charra, and J. M. Nunzi, “Phase-coherent control of the molecular polar order using dual-frequency interferences between circularly polarized beams,” Phys. Rev. A 56, 3888-3896 (1997). [CrossRef]
  13. M. Canva, G. Le Saux, P. Geoges, A. Brun, F. Chaput, and J. P. Boilot, “All-optical gel memory,” Opt. Lett. 17, 218-220 (1992). [CrossRef] [PubMed]
  14. U. Österberg and W. Margulis, “Experimental studies on efficient frequency doubling in glass optical fibers,” Opt. Lett. 12, 57-59 (1987). [CrossRef] [PubMed]
  15. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12, 585-587 (1987). [CrossRef] [PubMed]
  16. V. Mizrahi, U. Osterberg, J. E. Sipe, and G. I. Stegeman, “Test of a model of efficient second-harmonic generation in glass optical fibers,” Opt. Lett. 13, 279-281 (1988). [CrossRef] [PubMed]
  17. M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Proc. SPIE 2042, 2-13 (1993).
  18. M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327-338 (1995).
  19. M. Dumont and A. El Osman, “On spontaneous and photoinduced orientational mobility of dye molecules in polymer films,” Chem. Phys. 245, 437-462 (1999). [CrossRef]
  20. N. Nguyen Thi Kim, M. Dumont, J. A. Delaire, and K. Nakatani, “Orientation of azo-dye molecules in polymer films, via photoisomerization: dichroism measurements and second harmonic generation,” Mol. Cryst. Liq. Cryst. 430, 249-256 (2005). [CrossRef]
  21. S. Brasselet and J. Zyss, “Control of the polarization dependence of optically poled nonlinear polymer films,” Opt. Lett. 19, 1464-1466 (1997). [CrossRef]
  22. S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B 15, 257-288 (1998). [CrossRef]
  23. S. Brasselet, “Processus multipolaires en optique non-linéaire dans les miliuex moléculaires,” Thèse de Doctorat (Université Paris 11, Orsay, 1997).
  24. As it appears in experiments and as it will be shown in the second paper two types of saturation are to be considered: the saturation of, AHB (which exists as soon as τCPr(Ω) is not much smaller than 1, even if there is no AR) and the saturation of, AR in the photoisomerization cycle, which appears for a much smaller pumping intensity (since, AR is in competition with diffusion in T, which is often negligible), but generally after longer times (depending of the average rotation in each cycle).
  25. M. Dumont, “Modelization of the angular redistribution in optical ordering processes in dye containing polymers,” Nonlinear Opt. 25, 195-200 (2000).
  26. M. Dumont, “New developments in optical ordering of, NLO dyes in polymers,” Proc. SPIE 4461, 179-163 (2001).
  27. S. Hosotte and M. Dumont, “Orientational relaxation of photomerocyanine molecules in polymeric films,” Synth. Met. 81, 125-127 (1996). [CrossRef]
  28. S. Hosotte and M. Dumont, “Photoassisted poling and orientational relaxation of dye molecules in polymers. The case of spiropyran,” Proc. SPIE 2852, 53-63 (1996). [CrossRef]
  29. N. Bloembergen, Nonlinear Optics (Benjamin, 1965).
  30. H. Benoit, “Contribution à l'étude de l"effet Kerr présenté par les solutions diluées de macromolécules rigides,” Ann. Phys. (Paris) 6, 561 (1951).
  31. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecules angular mobility,” Synth. Met. 54, 373-381 (1993). [CrossRef]
  32. The formal expression, ∑m′(−)m′AT,m′a,j(n+1)ST,−m′a′,j(p), looks like the scalar product ATa,J(n+1)⋅STa′,J(p), but it is not, since these two tensors are orthogonal if a≠a′.
  33. M. Dumont, is preparing a paper to be called “Dynamics of all-optical poling of photoisomerizable molecules. II. Comparison of angular redistribution models.”
  34. J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, “Transient optically induced noncentrosymmetry in a solution of octupolar molecules,” Chem. Phys. Lett. 219, 349-354 (1993). [CrossRef]
  35. X. Yu, X. Zhong, Q. Li, S. Luo, and Y. Chen, “Method of improving optical poling efficiency in polymer films,” Opt. Lett. 26, 220-222 (2001). [CrossRef]
  36. C. Fiorini, F. Charra, and J. M. Nunzi, “Six-wave mixing probe of light-induced second-harmonic generation: example of dye solutions,” J. Opt. Soc. Am. B 12, 2347-2358 (1994). [CrossRef]
  37. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction of light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  38. P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23-39 (1963). [CrossRef]
  39. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 2003).
  40. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  41. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  42. J. R. R. Leite, R. L. Sheffield, M. Ducloy, R. M. Sharma, and M. Feld, “Theory of coherent three-level beats,” Phys. Rev. A 14, 1151-1168 (1976). [CrossRef]
  43. M. Dumont, “Théorie du pompage optique avec un laser, étude expérimentale dans le cas du Néon de las réponse linéaire et de quelques effets de saturation,” Thèse de Doctorat d'état ès Sciences Physiques (Faculté des Sciences de Paris, 1971), p. 43, http://tel.archives-ouvertes.fr/docs/00/06/09/12/PDF/1971DUMONT.pdf.
  44. T. K. Yee and T. K. Gustafson, “Diagrammatic analysis of the density operator for nonlinear optical calculations: pulsed and cw responses,” Phys. Rev. A 18, 1597-1617 (1978). [CrossRef]
  45. A. Messiah, Mécanique Quantique (Dunod, 1960), Vol. II.
  46. G. Arfken, Mathematical Methods for Physics (Academic, 1985).
  47. Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric fields: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855-1867 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited