OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1076–1083

Laser guiding of cold molecules in a hollow photonic bandgap fiber

Runqin Liu, Qi Zhou, Yaling Yin, and Jianping Yin  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 1076-1083 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a promising scheme to guide buffer-gas cooled arbitrary neutral molecules in a hollow-core photonic bandgap (HC-PBG) fiber by using a red-detuned Gaussian mode and calculate the optical coupling efficiency of the Gaussian mode in the HC-PBG and its optical potential for I 2 molecules. Also, we calculate both the straight guiding efficiency and bend guiding one by using a classical model and the dynamic process of the laser guiding of cold molecules in the HC-PBG by Monte Carlo simulation, by which we obtain the transverse and longitudinal velocity distributions of the output guided molecular beam. Our study shows that when the input laser power is 2 kW, the straight guiding efficiency is 24.6 % and when the input laser power is 200 W and R = 0.2   cm , the bent guiding efficiency is 1.2 % . We also find from the simulated results that our laser bent guiding scheme is a simple and desirable method to generate a CW cold arbitrary molecular beam.

© 2009 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping

ToC Category:
Atomic and Molecular Physics

Original Manuscript: November 11, 2008
Revised Manuscript: February 12, 2009
Manuscript Accepted: March 10, 2009
Published: April 21, 2009

Runqin Liu, Qi Zhou, Yaling Yin, and Jianping Yin, "Laser guiding of cold molecules in a hollow photonic bandgap fiber," J. Opt. Soc. Am. B 26, 1076-1083 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000). [CrossRef] [PubMed]
  2. J. Schmiedmayer, “Guiding and trapping a neutral atom on a wire,” Phys. Rev. A 52, R13-R16 (1995). [CrossRef] [PubMed]
  3. S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003). [CrossRef]
  4. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004). [CrossRef] [PubMed]
  5. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004). [CrossRef]
  6. S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005). [CrossRef] [PubMed]
  7. D. Patterson and J. M. Doyle, “Bright, guided molecular beam with hydrodynamic enhancement,” J. Chem. Phys. 126, 154307 (2007). [CrossRef] [PubMed]
  8. Y. Xia, L. Z. Deng, and J. P. Yin, “Electrostatic guiding of cold polar molecules on a chip,” Appl. Phys. B 81, 459-464 (2005). [CrossRef]
  9. L. Z. Deng, Y. Xia, and J. P. Yin, “A novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states,” Chin. Phys. Lett. 22, 1887-1890 (2005). [CrossRef]
  10. M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008). [CrossRef]
  11. Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008). [CrossRef] [PubMed]
  12. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001). [CrossRef]
  13. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996). [CrossRef] [PubMed]
  14. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996). [CrossRef] [PubMed]
  15. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997). [CrossRef]
  16. R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002). [CrossRef] [PubMed]
  17. J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007). [CrossRef]
  18. J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.
  19. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).
  20. F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195-1203 (2002). [PubMed]
  21. M. Saito, S. Sato, and M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277-282 (1993). [CrossRef]
  22. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787-2790 (1997). [CrossRef]
  23. H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998). [CrossRef]
  24. P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66, 065402 (2002). [CrossRef]
  25. V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.
  26. H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, “Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter,” Chem. Phys. Lett. 436, 331-334 (2007). [CrossRef]
  27. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004). [CrossRef]
  28. Y. L. Yin, Y. Xia, and J. Yin, “Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam,” Chin. Phys. B 17, 3672-3677 (2008). [CrossRef]
  29. H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).
  30. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited