OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1084–1090

Design of three-input nanophotonic AND gates

Arash Karimkhani and Mohammad Kazem Moravvej-Farshi  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 1084-1090 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001084


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By modifying the design of an existing two-input nanophotonic AND gate, whose operation is based on optical near-field (ONF) interactions among three neighboring quantum dots (QDs), we have improved the gate ON/OFF ratio by up to about 9 dB . To do this, we have eliminated the possibility of direct ONF interaction between the input and output dots. Then, by adding another QD, as the second control dot to both existing and the modified two-input architectures, we have proposed two new three-input nanophotonic AND gate schemes—one with direct ONF interaction between its input and output dots, and the other without such interaction. Although, the former gate turns on relatively faster, one of its three possible ON/OFF ratios are shown to be about 7.3 dB lower than the latter. The differences in two other possible ON/OFF ratios of the two new gates are insignificant.

© 2009 Optical Society of America

OCIS Codes
(200.4660) Optics in computing : Optical logic
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(200.6715) Optics in computing : Switching
(230.3750) Optical devices : Optical logic devices

ToC Category:
Optical Devices

History
Original Manuscript: January 9, 2009
Revised Manuscript: February 22, 2009
Manuscript Accepted: March 17, 2009
Published: April 21, 2009

Citation
Arash Karimkhani and Mohammad Kazem Moravvej-Farshi, "Design of three-input nanophotonic AND gates," J. Opt. Soc. Am. B 26, 1084-1090 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-1084


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, A. R. Dias, and L. M. Woody, “Fully parallel, high speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2, 1-3 (1978). [CrossRef] [PubMed]
  2. P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys. 75, 1818-1825 (1994). [CrossRef]
  3. P. S. Guilfoyle and D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. (Bellingham) 35, 436-442 (1996). [CrossRef]
  4. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Quantum Electron. 8, 839-862 (2002). [CrossRef]
  5. M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, and M. Ohtsu, “Nanophotonic computing based on optical near-field interactions between quantum dots,” IEICE Trans. Electron. E88-C, 1817-1823 (2005). [CrossRef]
  6. S. Sangu, K. Kobayashi, and M. Ohtsu, “Nanophotonic devices and fundamental functional operations,” IEICE Trans. E88-C (2005).
  7. M. Naruse, T. Yatsui, T. Kawazoe, Y. Akao, and M. Ohtsu, “Design and simulation of a nanophotonic traceable memory using localized energy dissipation and hierarchy of optical near-field interactions,” IEEE Trans. Nanotechnol. 7, 14-19 (2008). [CrossRef]
  8. M. Ohtsu, “Overview,” in Near-Field Optics: Principles and Applications, X.Zhu and M.Ohtsu, eds. (World Scientific, 2000).
  9. M. Ohtsu and K. Kobayashi, Optical near fields: introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale (Springer-Verlag, 2003). [PubMed]
  10. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88, 067404 (2002). [CrossRef] [PubMed]
  11. M.Ohtsu, ed., Progress in Nano-Electro-Optics I (Springer-Verlag, 2003).
  12. M.Ohtsu, ed., Progress in Nano-Electro-Optics II (Springer-Verlag, 2004).
  13. M.Ohtsu, ed., Progress in Nano-Electro-Optics III (Springer-Verlag, 2005).
  14. M.Ohtsu, ed., Progress in Nano-Electro-Optics IV (Springer-Verlag, 2005).
  15. M.Ohtsu, ed., Progress in Nano-Electro-Optics V (Springer-Verlag, 2006). [CrossRef]
  16. M.Ohtsu, ed., Progress in Nano-Electro-Optics VI (Springer-Verlag, 2008). [CrossRef]
  17. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (CRC Press, 2008). [CrossRef]
  18. M. Ohtsu and K. Kobayashi, Optical Near Fields (Springer-Verlag, 2004).
  19. M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, “Hierarchy in optical near-fields and its application to memory retrieval,” Opt. Express 13, 9265-9271 (2005). [CrossRef] [PubMed]
  20. S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Commun. Mag. 38, 84-94 (2000). [CrossRef]
  21. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer,” Appl. Phys. Lett. 82, 2957-2959 (2003). [CrossRef]
  22. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, “Nanometric summation architecture using optical near-field interaction between quantum dots,” Opt. Lett. 30, 201-203 (2005). [CrossRef] [PubMed]
  23. M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, and M. Ohtsu, “Optical interactions based on optical far- and near-field interactions for high-density data broadcasting,” Opt. Express 14, 306-313 (2006). [CrossRef] [PubMed]
  24. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972-1974 (2001). [CrossRef]
  25. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magner, U. Meirav, and M. A. Kastner, “Kondo effect in a single-electron transistor,” Nature 391, 156-159 (1998). [CrossRef]
  26. F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheir, and M. Bichler, “Annomalous kondo effect in a QD at nonzero bias,” Phys. Rev. Lett. 83, 804-807 (1999). [CrossRef]
  27. L. W. Molenkamp, K. Flensberg, and M. Kemerink, “Scaling of the coulomb energy due to quantum fluctuations in the charge on a QD,” Phys. Rev. Lett. 75, 4282-4285 (1995). [CrossRef] [PubMed]
  28. M. Taut, “Solution of the Schrodinger equation for QD lattices with coulomb interaction between dots,” Phys. Rev. B 62, 8126-8136 (2000). [CrossRef]
  29. G. Burkard, G. Seelig, and D. Loss, “Spin interaction and switching in vertically tunnel coupled QDs,” Phys. Rev. B 62, 2581-2592 (2000). [CrossRef]
  30. F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Kampman, and A. C. Gossard, “Single-electron charging in double and triple QDs with tunable coupling,” Phys. Rev. Lett. 75, 705-708 (1995). [CrossRef] [PubMed]
  31. N. Sakakura and Y. Masumoto, “Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes,” Phys. Rev. B 56, 4051-4055 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited