OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1111–1118

Optically deep asymmetric one-dimensional plasmonic crystal slabs: Genetic algorithm approach

Masanobu Iwanaga  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 1111-1118 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001111


View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical asymmetry with regard to transmission has been numerically explored in one-dimensional (1D) plasmonic crystal slabs (PlCSs) with the help of a genetic algorithm (GA). Optically deep asymmetric PlCSs are not obtained in one-layer systems and can be achieved in unit cell structures composed of more than two layers. The optical asymmetry is classified into two types. One is ascribed to anisotropic diffraction efficiency, and the other comes from collective oscillations of particle plasmons in each metallic nanorod and can induce nearly perfect absorption over a broad band. In both asymmetry types, the degree of freedom in depth is crucial to manipulate the linear optical responses of PlCSs. On the basis of the GA search, a simple design for optically asymmetric 1D PlCS is extracted, which provides a standard for broadband plasmonic absorbers in both photon energy and incident angles.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.0220) Optical design and fabrication : Optical design and fabrication
(300.1030) Spectroscopy : Absorption
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 19, 2008
Manuscript Accepted: March 20, 2009
Published: April 27, 2009

Citation
Masanobu Iwanaga, "Optically deep asymmetric one-dimensional plasmonic crystal slabs: Genetic algorithm approach," J. Opt. Soc. Am. B 26, 1111-1118 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-1111


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), p. 446.
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998). [CrossRef]
  3. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  4. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006). [CrossRef] [PubMed]
  5. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater. 6, 946-950 (2007). [CrossRef]
  6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-380 (2008). [CrossRef] [PubMed]
  7. M. Iwanaga, “Ultracompact waveplates: approach from metamaterials,” Appl. Phys. Lett. 92, 153102 (2008). [CrossRef]
  8. M. Iwanaga, “Effective optical constants in stratified metal-dielectric metamaterial,” Opt. Lett. 32, 1314-1316 (2007). [CrossRef] [PubMed]
  9. Y. Chen, R. Yu, W. Li, O. Nohadani, S. Haas, and A. F. J. Levi, “Adaptive design of nanoscale dielectric structures for photonics,” J. Appl. Phys. 94, 6065-6068 (2003). [CrossRef]
  10. C. Y. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals by using level set methods,” Appl. Phys. B 81, 235-244 (2005). [CrossRef]
  11. A. Håkansson, H. T. Miyazaki, and J. Sánchez-Dehesa, “Inverse design for full control of spontaneous emission using light emitting scattering optical elements,” Phys. Rev. Lett. 96, 153902 (2006). [CrossRef] [PubMed]
  12. L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 035109 (2003). [CrossRef]
  13. J. Goh, I. Fushman, D. Englund, and J. Vučković, “Genetic optimization of photonic bandgap structures,” Opt. Express 15, 8218-8230 (2007). [CrossRef] [PubMed]
  14. A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, “Stochastic optimization of low-loss optical negative-index metamaterial,” J. Opt. Soc. Am. B 24, A34-A39 (2007). [CrossRef]
  15. P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Opt. Express 16, 12806-12818 (2008). [CrossRef] [PubMed]
  16. J. H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, 1992).
  17. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).
  18. T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001). [CrossRef]
  19. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717-754 (2004). [CrossRef]
  20. M. Iwanaga, A. S. Vengurlekar, T. Hatano, and T. Ishihara, “Reciprocal transmittances and reflectances: an elementary proof,” Am. J. Phys. 75, 899-902 (2007). [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002). [CrossRef]
  23. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  24. D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945-9951 (1988). [CrossRef]
  25. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70, 125113 (2004). [CrossRef]
  26. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431-436 (1976). [CrossRef]
  27. T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008). [CrossRef]
  28. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171-2175 (2008). [CrossRef] [PubMed]
  29. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited