OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1119–1128

Exact analytical approaches for elliptic cylindrical invisibility cloaks

E. Cojocaru  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 1119-1128 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Elliptic cylindrical cloaks are investigated analytically in elliptic cylindrical coordinates. It is shown that both the linear and higher-order transformations produce an imperfect cloaking due to the poor symmetry of the coordinate system. The imperfection being in concordance with that obtained by numerical simulations, it cannot be eliminated by improving the computer techniques. The cloaking becomes almost perfect in the limit case of nearly circular cloaks with the advantage that none of the parameters is singular in the cloak shell. In circular cylindrical coordinates instead, a perfect cloaking is achieved with elliptic cloaks, as has been proven in other studies by numerical simulations. Analytic solutions to Maxwell’s equations are provided in these coordinates only in the limit case of nearly circular cloaks. Simple general expressions for material parameters are given also in circular cylindrical coordinates that can be then transformed in Cartesian coordinates.

© 2009 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(260.2710) Physical optics : Inhomogeneous optical media
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Physical Optics

Original Manuscript: February 10, 2009
Revised Manuscript: March 31, 2009
Manuscript Accepted: April 6, 2009
Published: April 30, 2009

E. Cojocaru, "Exact analytical approaches for elliptic cylindrical invisibility cloaks," J. Opt. Soc. Am. B 26, 1119-1128 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006). [CrossRef]
  2. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006). [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). [CrossRef] [PubMed]
  5. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  6. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007). [CrossRef] [PubMed]
  7. C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16, 19366-19374 (2008). [CrossRef]
  8. W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008). [CrossRef]
  9. Y. You, G. W. Kattawar, P. W. Zhai, and P. Yang, “Invisibility cloaks for irregular particles using coordinate transformations,” Opt. Express 16, 6134-6144 (2008). [CrossRef] [PubMed]
  10. W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformation make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10, 043040 (2008). [CrossRef]
  11. Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008). [CrossRef]
  12. A. Nicolet, F. Zolla, and S. Guenneau, “Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section,” Opt. Lett. 33, 1584-1586 (2008). [CrossRef] [PubMed]
  13. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Liu, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008). [CrossRef]
  14. Y. Luo, J. Zhang, H. Chen, and B. I. Wu, “Full-wave analysis of prolate spheroidal and hyperboloidal cloaks,” J. Phys. D 41, 235101 (2008). [CrossRef]
  15. P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak,” Appl. Phys. Lett. 93, 243502 (2008). [CrossRef]
  16. D. H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008). [CrossRef]
  17. H. Ma, S. Qu, Z. Xu, J. Zhang, B. Chen, and J. Wang, “Material parameter equation for elliptical cylindrical cloaks,” Phys. Rev. A 77, 013825 (2008). [CrossRef]
  18. E. Cojocaru, “Elliptic cylindrical invisibility cloak, a semianalytical approach using Mathieu functions,” eprint arXiv: 0808.1498 [physics. comp-ph] (2008).
  19. W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008). [CrossRef]
  20. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  21. E. Cojocaru, “Mathieu functions computational toolbox implemented in Matlab,” eprint arXiv: 0811.1970 [math-ph] (2008).
  22. J. J. Stamnes, “Exact two-dimensional scattering by perfectly reflecting elliptical cylinders, strips and slits,” Pure Appl. Opt. 4, 841-855 (1995). [CrossRef]
  23. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1964).
  24. E. Janke, F. Emde, and F. Losch, Tafeln Hoherer Functionen (Verlag, 1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited