OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1129–1136

Phonon polaritons in photonic crystals at terahertz frequency range

C. A. A. Araújo, E. L. Albuquerque, P. W. Mauriz, and M. S. Vasconcelos  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 1129-1136 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the phonon-polariton band gaps in periodic and quasi-periodic (Fibonacci-type) multilayers made up of both positive ( SiO 2 ) and negative refractive index materials (metamaterials) following the Fibonacci sequence in the terahertz region. The behavior of the polaritonic band gaps as a function of the multilayer period is investigated systematically. Our theoretical model makes use of a transfer matrix approach to simplify the algebra involved and to set up analytical phonon-polariton dispersion relations (bulk and surface modes). We also present a quantitative analysis of the results, pointing out the distribution of the allowed polaritonic bandwidths for high Fibonacci generations, which gives good insight about their localization and power laws.

© 2009 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(240.5420) Optics at surfaces : Polaritons
(160.3918) Materials : Metamaterials
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: December 15, 2008
Revised Manuscript: March 23, 2009
Manuscript Accepted: March 24, 2009
Published: April 30, 2009

C. A. A. Araújo, E. L. Albuquerque, P. W. Mauriz, and M. S. Vasconcelos, "Phonon polaritons in photonic crystals at terahertz frequency range," J. Opt. Soc. Am. B 26, 1129-1136 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ϵand μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. S. A. Ramakrishna, “Negative refraction at visible frequencies,” Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  5. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  6. P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, “Negative refraction and left-handed electromagnetism in microwave photonic crystals,” Phys. Rev. Lett. 92, 127401-127404 (2004). [CrossRef] [PubMed]
  7. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  8. A. Berrier, M. Mulot, M. Swillo, M. Qui, L. Thylén, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902-073905 (2004). [CrossRef] [PubMed]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  10. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  11. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764-1769 (1994). [CrossRef] [PubMed]
  12. Y. Zeng, X. Chen, and W. Lu, “Modified spontaneous emission from a two-dimensional photonic crystal,” Phys. Rev. E 70, 047601-047603 (2004). [CrossRef]
  13. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  14. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  15. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952-954 (2000). [CrossRef]
  16. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127-12133 (1998). [CrossRef]
  17. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997). [CrossRef]
  18. S. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, 2002).
  19. R. Loudon, “Raman effect in crystals,” Adv. Phys. 13, 423 (1964). [CrossRef]
  20. Polaritons, E.Burstein and F.de Martini, eds. (Pergamon, 1974).
  21. D. L. Mills and E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37, 817-926 (1974). [CrossRef]
  22. E. L. Albuquerque and M. G. Cottam, “Superlattice plasmon-polaritons,” Phys. Rep. 233, 67-135 (1993). [CrossRef]
  23. E. L. Albuquerque and M. G. Cottam, “Theory of elementary excitations in quasiperiodic structures,” Phys. Rep. 376, 225-337 (2003). [CrossRef]
  24. E. L. Albuquerque and M. G. Cottam, Polaritons in Periodic and Quasiperiodic Structures (Elsevier, 2004).
  25. G. M. Turner, M. C. Beard, and C. A. Schmuttenmaer, “Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide,” J. Phys. Chem. B 106, 11716-11719 (2002). [CrossRef]
  26. D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2003).
  27. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007). [CrossRef]
  28. M. S. Vasconcelos, P. W. Mauriz, F. F. de Medeiros, and E. L. Albuquerque, “Photonic band gaps in quasiperiodic photonic crystals with negative refractive index,” Phys. Rev. B 76, 165117 (2007). [CrossRef]
  29. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004). [CrossRef]
  30. H. J. Falge and A. Otto, “Dispersion of phonon-like surface polaritons on α-quartz observed by attenuated total reflection,” Phys. Status Solidi B 56, 523-534 (1973). [CrossRef]
  31. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  32. M. K. Farr, J. G. Taylor, and S. K. Sinha, “Lattice dynamics of GaSb,” Phys. Rev. B 11, 1587-1594 (1975). [CrossRef]
  33. M. Kohmoto, L. P. Kadanoff, and C. Tang, “Localization problem in one dimension: mapping and escape,” Phys. Rev. Lett. 50, 1870-1872 (1983). [CrossRef]
  34. M. Kohmoto, B. Sutherland, and C. Tang, “Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model,” Phys. Rev. B 35, 1020-1033 (1987). [CrossRef]
  35. I. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611-036614 (2002). [CrossRef]
  36. L. Wu, S. He, and L. Shen, “Band structure for a one-dimensional photonic crystal containing left-handed materials,” Phys. Rev. B 67, 235103-235108 (2003). [CrossRef]
  37. N. C. Panoiu, R. M. Osgood, Jr., S. Zhang, and S. R. J. Brueck, “Zero-n−bandgap in photonic crystal superlattices,” J. Opt. Soc. Am. B 23, 506-513 (2006). [CrossRef]
  38. E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69, 397-442 (2006). [CrossRef]
  39. P. Hawrylak and J. J. Quinn, “Critical plasmons of a quasiperiodic semiconductor superlattice,” Phys. Rev. Lett. 57, 380-383 (1986). [CrossRef] [PubMed]
  40. K. L. Yeh, T. Hornung, J. C. Vaughan, and K. A. Nelson, in Ultrafast Phenomena XV, P.Corkum, D.M.Jonas, R.J. D.Miller, and A.M.Weiner, eds. (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited