OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 923–929

Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures

Hung-Lu Chen, Jyh-Yang Wang, Wen-Hung Chuang, Yean-Woei Kiang, and C. C. Yang  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 923-929 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000923


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dipole radiation power and far-field emission power in the process of dipole surface plasmon (SP) coupling over the spectral range of 400 800 nm in air/Ag/dielectric grating nanostructures with two dipole positions are evaluated based on the boundary integral equation method. Three kinds of SP coupling features are differentiated, including the plane-wave-excited surface plasmon polariton (SPP), dipole-excited SPP, and localized surface plasmon (LSP). The dipole radiation and coupling system emission powers depend on the metal nanostructure, dipole position, and spectral location. Generally, when the Ag layer becomes thinner, the major SPP and LSP coupling features redshift. The emission of a coupling system is mainly on the dipole side of the air/Ag/dielectric nanostructure, even though the metal layer is thin.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 17, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: January 17, 2009
Published: April 3, 2009

Citation
Hung-Lu Chen, Jyh-Yang Wang, Wen-Hung Chuang, Yean-Woei Kiang, and C. C. Yang, "Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures," J. Opt. Soc. Am. B 26, 923-929 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-923


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008). [CrossRef] [PubMed]
  3. I. Gontijo, M. Boroditsky, and E. Yablonovitch, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999). [CrossRef]
  4. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater. 3, 601-605 (2004). [CrossRef]
  5. R. Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87, 111104 (2005). [CrossRef]
  6. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  7. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). [CrossRef]
  8. K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008). [CrossRef]
  9. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005). [CrossRef]
  10. K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced bright light emission from InGaN/GaN,” Phys. Status Solidi A 204, 2103-2107 (2007). [CrossRef]
  11. C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined Stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett. 90, 183114 (2007). [CrossRef]
  12. Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007). [CrossRef]
  13. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007). [CrossRef]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201 (2008). [CrossRef] [PubMed]
  15. W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92, 133115 (2008). [CrossRef]
  16. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photonics Technol. Lett. 20, 1339-1341 (2008). [CrossRef]
  17. F. Wooten, Optical Properties of Solids (Academic, 1972).
  18. J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method,” Opt. Express 15, 9048-9062 (2007). [CrossRef] [PubMed]
  19. K. M. Chen, “A mathematical formulation of the equivalence principle,” IEEE Trans. Microwave Theory Tech. 37, 1576-1581 (1989). [CrossRef]
  20. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  21. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324-328 (2007). [CrossRef]
  22. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited