OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 930–938

Effects of initial focusing on the blueshifting of high-power laser pulses

James K. Koga  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 930-938 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000930


View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By directly solving Maxwell’s equations including higher-order gas polarization and by using a semi-analytical method for pulse propagation, we study the generation of plasma by high-irradiance laser pulses propagating in a neutral gas and determine the effect of initial focusing on the blueshift of the laser pulse. By varying the initial focusing length, we find that longer than a specific focusing length the blueshift is nearly fixed and shorter than the specific focusing length that the shift changes with the initial focusing length.

© 2009 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.7220) Nonlinear optics : Upconversion
(260.3230) Physical optics : Ionization
(260.5950) Physical optics : Self-focusing
(350.5400) Other areas of optics : Plasmas

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 9, 2008
Revised Manuscript: February 19, 2009
Manuscript Accepted: February 26, 2009
Published: April 3, 2009

Citation
James K. Koga, "Effects of initial focusing on the blueshifting of high-power laser pulses," J. Opt. Soc. Am. B 26, 930-938 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Gaeta, “Collapsing light really shines,” Science 301, 54-55 (2003). [CrossRef] [PubMed]
  2. A. M. A. Couairon, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47-189 (2007). [CrossRef]
  3. J. K. Koga, N. Naumova, M. Kando, L. N. Tsintsadze, K. Nakajima, S. V. Bulanov, H. Dewa, H. Kotaki, and T. Tajima, “Fixed blueshift of high intensity short pulse lasers propagating in gas chambers,” Phys. Plasmas 7, 5223-5231 (2000). [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  5. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406-1-036406-7 (2006). [CrossRef]
  6. Z. Hao, J. Zhang, Z. Zhang, X. Yuan, Z. Zheng, X. Lu, Z. Jin, Z. Wang, J. Zhong, and Y. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air: prefocused versus free propagation,” Phys. Rev. E 74, 066402-1-066402-5 (2006). [CrossRef]
  7. W. G. Wagner, H. A. Haus, and J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256-266 (1968). [CrossRef]
  8. Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 1984).
  9. N. Aközbek, C. M. Bowden, A. Talebpour, and S. L. Chin, “Femtosecond pulse propagation in air: variational analysis,” Phys. Rev. E 61, 4540-4549 (2000). [CrossRef]
  10. Z. Wu, H. Jiang, H. Yang, and Q. Gong, “The refocusing behavior of a focused femtosecond laser pulse in fused silica,” J. Opt. A 5, 102-107 (2003). [CrossRef]
  11. J. Koga, “Observation of supercontinuum generation in the direct simulation of an intense laser pulse propagating in a neutral gas,” Phys. Rev. E 70, 056404-1-056404-5 (2004). [CrossRef]
  12. P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phys. Rev. E 54, 4211-4232 (1996). [CrossRef]
  13. J. Koga, “Simulation model for the effects of nonlinear polarization on the propagation of intense pulse lasers,” Opt. Lett. 24, 408-410 (1999). [CrossRef]
  14. J. H. Eberly, J. Javanainen, and K. Rzażwski, “Above-threshold ionization,” Phys. Rep. 204, 331-383 (1991). [CrossRef]
  15. X. Liu and D. Umstadter, “Self-focusing of intense subpicosecond laser pulses in a low pressure gas,” in Vol. 17 of OSA Proceedings on Shortwavelength V, P.B.Corkum and M.D.Perry, eds. (Optical Society of America, 1993), pp. 45-49.
  16. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Butterworth-Heinemann, 1997).
  17. E. L. Lindman, “'Free-space' boundary conditions for the time-dependent wave equation,” J. Comput. Phys. 18, 66-78 (1975). [CrossRef]
  18. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-l10 (1975). [CrossRef]
  19. G. Fibich and B. Ilan, “Self-focusing of elliptic beams: an example of the failure of the aberrationless approximation,” J. Opt. Soc. Am. B 17, 1749-1758 (2000). [CrossRef]
  20. A. Couairon, “Light bullets from femtosecond filamentation,” Eur. Phys. J. D 27, 159-167 (2003). [CrossRef]
  21. N. C. Kothari and T. Kobayashi, “Growth rate and diameter of filaments in self-focusing media,” Phys. Rev. Lett. 50, 160-163 (1983). [CrossRef]
  22. S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212-2215 (1989). [CrossRef] [PubMed]
  23. A. Javan and P. L. Kelley, “Possibility of self-focusing due to intensity-dependent anomalous dispersion,” IEEE J. Quantum Electron. QE-2, 470-473 (1966). [CrossRef]
  24. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73-75 (1995). [CrossRef] [PubMed]
  25. H. R. Lange, A. Chiron, J.-F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81, 1611-1613 (1998). [CrossRef]
  26. D. Faccio, M. A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. Di Trapani, “Angular and chromatic dispersion in Kerr-driven conical emission,” Opt. Commun. 265, 672-677 (2006). [CrossRef]
  27. D. Faccio, A. Averchi, A. Couairon, M. Kolesik, J. V. Moloney, A. Dubietis, G. Tamosauskas, P. Polesana, A. Piskarskas, and P. Di Trapani, “Spatio-temporal reshaping and x wave dynamics in optical filaments,” Opt. Express 15, 13077-13095 (2007). [CrossRef] [PubMed]
  28. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084-1090 (1992). [CrossRef] [PubMed]
  29. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307-1314 (1965).
  30. H. Press, T. Teukolsky, T. Vetterling, and P. Flannery, Numerical Recipes (Cambridge University Press, 1992).
  31. E. Esarey, G. Joyce, and P. Sprangle, “Frequency up-shifting of laser pulses by copropagating ionization fronts,” Phys. Rev. A 44, 3908-3911 (1991). [CrossRef] [PubMed]
  32. K. Nagashima, J. Koga, and M. Kando, “Numerical study of laser wake field generated by two colliding laser beams,” Phys. Rev. E 64, 066403-1-066403-4 (2001). [CrossRef]
  33. W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202, 189-197 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited