OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 946–950

Spectral broadening and compression to few-cycle pulse widths in the regime of soliton-self-frequency shift

Aleksei M. Zheltikov  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 946-950 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000946


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Soliton-self-frequency shift in fibers with a precisely controlled dispersion is shown to enable efficient spectral broadening and temporal compression of light fields to few-cycle pulse widths. Anomalously dispersive fibers with positive third-order dispersion can transform nano- and subnanojoule 100 200 fs laser pulses into smoothly wavelength-tunable and spectrally broadened solitons with a pulse width as short as two to five field cycles. This regime of soliton pulse transformation is ideally suited for the creation of compact frequency-tunable fiber sources as well as for ultrabroadband optical parametric chirped-pulse amplification with an optical synchronization between the pump and seed fields.

© 2009 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 8, 2008
Revised Manuscript: January 26, 2009
Manuscript Accepted: February 2, 2009
Published: April 9, 2009

Citation
Aleksei M. Zheltikov, "Spectral broadening and compression to few-cycle pulse widths in the regime of soliton-self-frequency shift," J. Opt. Soc. Am. B 26, 946-950 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-946


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  3. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006). [CrossRef]
  4. J. C. Knight, “Photonic crystal fibers and fiber lasers,” J. Opt. Soc. Am. B 24, 1661-1668 (2007). [CrossRef]
  5. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1176 (2006). [CrossRef]
  7. A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Phys. Usp. 49, 605-628 (2006). [CrossRef]
  8. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347-1348 (1998). [CrossRef]
  9. K. Furusawa, A. Malinowski, J. Price, T. Monro, J. Sahu, J. Nilsson, and D. Richardson, “Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9, 714-720 (2001). [CrossRef] [PubMed]
  10. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574-576 (2006). [CrossRef] [PubMed]
  11. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495-3497 (2007). [CrossRef] [PubMed]
  12. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33, 107-109 (2008). [CrossRef] [PubMed]
  13. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  14. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  15. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153-6159 (2005). [CrossRef] [PubMed]
  16. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702-1704 (2003). [CrossRef] [PubMed]
  17. F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835-840 (2004). [CrossRef] [PubMed]
  18. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002). [CrossRef] [PubMed]
  19. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28, 1448-1450 (2003). [CrossRef] [PubMed]
  20. A. M. Zheltikov, “Isolated waveguide modes of high-intensity light fields,” Phys. Usp. 47, 1205-1220 (2004). [CrossRef]
  21. A. A. Ivanov, A. A. Podshivalov, and A. M. Zheltikov, “Frequency-shifted megawatt soliton output of a hollow photonic-crystal fiber for time-resolved coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Lett. 31, 3318-3320 (2006). [CrossRef] [PubMed]
  22. A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blue shift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76, 053811 (2007). [CrossRef]
  23. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000). [CrossRef]
  24. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358-360 (2001). [CrossRef]
  25. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328-1330 (2006). [CrossRef] [PubMed]
  26. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, “Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic-crystal fiber,” Opt. Lett. 31, 2323-2325 (2006). [CrossRef] [PubMed]
  27. A. M. Zheltikov, “Time-resolved coherent Raman and sum-frequency generation spectroscopy with wavelength-tunable, short-pulse, photonic-crystal fiber light sources,” J. Raman Spectrosc. 38, 1052-1063 (2007). [CrossRef]
  28. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 1934-1938 (2005). [CrossRef]
  29. C. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. Zheltikov, and F. Krausz, “Soliton-based pump-seed synchronization for few-cycle OPCPA,” Opt. Express 13, 6550-6557 (2005). [CrossRef] [PubMed]
  30. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuška, “Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers,” Phys. Rev. E 72, 056603 (2005). [CrossRef]
  31. F. Tavella, A. Marcinkevicius, and F. Krausz, “90 mJ parametric chirped pulse amplification of 10 fs pulses,” Opt. Express 14, 12822-12827 (2006). [CrossRef] [PubMed]
  32. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal'shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, I. V. Yakovlev, S. G. Garanin, S. A. Sukharev, N. N. Rukavishnikov, A. V. Charukhchev, R. R. Gerke, and V. E. Yashin, “200 TW45 fs laser based on optical parametric chirped pulse amplification,” Opt. Express 14, 446-454 (2006). [CrossRef] [PubMed]
  33. V. V. Lozhkarev, S. G. Garanin, R. R. Gerke, V. N. Ginzburg, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal'shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, N. N. Rukavishnikov, A. M. Sergeev, S. A. Sukharev, E. A. Khazanov, G. I. Freidman, A. V. Charukhchev, A. A. Shaykin, and A. A. Yakovlev, “100-TWfemtosecond laser based on parametric amplification,” JETP Lett. 82, 178-180 (2005). [CrossRef]
  34. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  35. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer, 2003).
  36. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723-1725 (2008). [CrossRef] [PubMed]
  37. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  38. E. E. Serebryannikov and A. M. Zheltikov, “Soliton self-frequency shift with diffraction-suppressed wavelength variance and timing jitter,” J. Opt. Soc. Am. B 23, 1882-1887 (2006). [CrossRef]
  39. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  40. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705-1708 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited