OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 951–958

Ultrafast all-optical logic AND gate for CSRZ signals using periodically poled lithium niobate

Jian Wang, Qizhen Sun, and Junqiang Sun  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 951-958 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000951


View Full Text Article

Enhanced HTML    Acrobat PDF (1101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and investigate ultrafast logic AND gate for carrier-suppressed return-to-zero (CSRZ) signals by exploiting two kinds of cascaded second-order nonlinearities in a periodically poled lithium niobate (PPLN) waveguide. The analytical solutions are derived under the nondepletion approximation clearly describing the principle of operation. First, based on cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) in a PPLN, an all-optical 40 Gbit s CSRZ logic AND gate is successfully implemented in the experiment and verified by numerical simulations. It is found that the converted idler, taking the AND result, keeps the CSRZ modulation format unchanged. Second, by using cascaded sum- and difference-frequency generation (cSFG/DFG) in a PPLN, we report simultaneous CSRZ logic AND operation and format conversion from CSRZ to return-to-zero (RZ). Single PPLN-based all-optical 40 Gbit s tunable (fixed-in variable-out) and flexible (variable-in variable-out) simultaneous CSRZ logic AND gate and CSRZ-to-RZ format conversion are successfully demonstrated in the experiment and confirmed via theoretical analyses. The obtained simulation and theoretical results, including optical spectra, temporal waveforms, eye diagrams, and phase diagrams, conform to the experimental results, thereby indicating the successful implementation of PPLN-based all-optical logic AND gate for CSRZ signals.

© 2009 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.3730) Integrated optics : Lithium niobate
(130.3750) Integrated optics : Optical logic devices
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.1150) Optical devices : All-optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 2, 2008
Manuscript Accepted: February 25, 2009
Published: April 9, 2009

Citation
Jian Wang, Qizhen Sun, and Junqiang Sun, "Ultrafast all-optical logic AND gate for CSRZ signals using periodically poled lithium niobate," J. Opt. Soc. Am. B 26, 951-958 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999). [CrossRef] [PubMed]
  2. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000). [CrossRef]
  3. K. Vlachos, N. Pleros, C. Bintjas, G. Theophilopoulos, and H. Avramopoulos, “Ultrafast time-domain technology and its application in all-optical signal processing,” J. Lightwave Technol. 21, 1857-1868 (2003). [CrossRef]
  4. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392-3399 (2006). [CrossRef]
  5. K. Mishina, S. M. Nissanka, A. Maruta, S. Mitani, K. Ishida, K. Shimizu, T. Hatta, and K. Kitayama, “All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters,” Opt. Express 15, 7774-7785 (2007). [CrossRef] [PubMed]
  6. D. M. F. Lai, C. H. Kwok, and K. K. Y. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362-18370 (2008). [CrossRef] [PubMed]
  7. H. N. Tan, M. Matsuura, and N. Kishi, “Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches,” Opt. Express 16, 19063-19071 (2008). [CrossRef]
  8. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579-2592 (2006). [CrossRef]
  9. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999). [CrossRef]
  10. Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.
  11. J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405-7414 (2005). [CrossRef] [PubMed]
  12. J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18, 2093-2095 (2006). [CrossRef]
  13. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007). [CrossRef]
  14. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007). [CrossRef]
  15. X. Wu, L. Christen, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “Optical 10-20 and 20-40 Gbit/s pseudorandom bit sequence data multiplexing utilizing conversion-dispersion-based tunable optical delays,” Opt. Lett. 33, 1518-1520 (2008). [CrossRef] [PubMed]
  16. J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006). [CrossRef] [PubMed]
  17. J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008). [CrossRef]
  18. J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007). [CrossRef] [PubMed]
  19. J. Wang, J. Q. Sun, X. L. Zhang, D. X. Huang, and M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33, 1419-1421 (2008). [CrossRef] [PubMed]
  20. Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776-2782 (2006). [CrossRef] [PubMed]
  21. S. Kumar, A. E. Willner, D. Gurkan, K. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255-10260 (2006). [CrossRef] [PubMed]
  22. J. E. McGeehan, S. Kumar, and A. E. Willner, “Simultaneous optical digital half-subtraction and -addition using SOAs and a PPLN waveguide,” Opt. Express 15, 5543-5549 (2007). [CrossRef] [PubMed]
  23. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43, 409-410 (2007). [CrossRef]
  24. J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583-588 (2007). [CrossRef] [PubMed]
  25. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32, 1477-1479 (2007). [CrossRef] [PubMed]
  26. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007). [CrossRef]
  27. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007). [CrossRef] [PubMed]
  28. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008). [CrossRef] [PubMed]
  29. H. Sotobayashi, W. Chujo, A. Konishi, and T. Ozeki, “Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDM×40-Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization,” J. Opt. Soc. Am. B 19, 2803-2809 (2002). [CrossRef]
  30. A. Chowdhury, G. Raybon, and R.-J. Essiambre, “Optical phase conjugation for intra-channel nonlinearity compensation in 40 Gbit/s CSRZ pseudo-linear systems,” Electron. Lett. 40, 1442-1443 (2004). [CrossRef]
  31. A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, “WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation,” Electron. Lett. 41, 151-152 (2005). [CrossRef]
  32. T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photonics Technol. Lett. 20, 1597-1599 (2008). [CrossRef]
  33. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711-4728 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited