OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 965–972

Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses

Oleksandr Isaienko and Eric Borguet  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 965-972 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (690 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Noncollinear optical parametric amplifiers (NOPAs) pumped with ultrashort subpicosecond pulses often suffer from pulse-front tilting, resulting in angular dispersion and noncompressibility of the amplified signal pulses. We show that pulse-front matching (PFM) with a prism-telescope setup corrects for pulse-front tilts in a near-IR NOPA. We discuss the conditions that lead to pulse-front tilt and angular dispersion in NOPA-amplified signal pulses, thus requiring pulse-front mismatch correction. We review the method of PFM and describe the application of PFM to an 800 nm pumped near-IR NOPA based on a 2-mm-thick bulk potassium-titanyl phosphate (KTP) crystal. The introduction of pulse-front matching into the KTP-NOPA reduces the signal pulse angular dispersion significantly over the > 35   THz bandwidth, thus nearly removing the pulse-front tilt. Compression of 1200 nm pulses to 25   fs can be readily achieved with a fused-silica prism pair compressor.

© 2009 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: December 2, 2008
Revised Manuscript: February 11, 2009
Manuscript Accepted: February 16, 2009
Published: April 10, 2009

Oleksandr Isaienko and Eric Borguet, "Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses," J. Opt. Soc. Am. B 26, 965-972 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007). [CrossRef] [PubMed]
  2. C. Vozzi, C. Manzoni, F. Calegari, E. Benedetti, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, “Characterization of a high-energy self-phase-stabilized near-infrared parametric source,” J. Opt. Soc. Am. B 25, B112-B117 (2008). [CrossRef]
  3. D. Polli, L. Luer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78, 103108 (2007). [CrossRef] [PubMed]
  4. G. Cerullo, C. Manzoni, L. Luer, and D. Polli, “Time-resolved methods in biophysics. 4. Broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis,” Photochem. Photobiol. Sci. 6, 135-144 (2007). [CrossRef] [PubMed]
  5. S. Park, K. Kwak, and M. D. Fayer, “Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics,” Laser Phys. Lett. 4, 704-718 (2007). [CrossRef]
  6. T. Kobayashi and Z. Wang, “Correlations of instantaneous transition energy and intensity of absorption peaks during molecular vibration: toward potential hyper-surface,” New J. Phys. 10, 065015 (2008). [CrossRef]
  7. Y. S. Seo, Y. Fujimoto, and M. Nakatsuka, “Optical amplification in a bismuth-doped silica glass at 1300 nm telecommunications window,” Opt. Commun. 266, 169-171 (2006). [CrossRef]
  8. O. Y. Jeon, M. J. Jin, H. H. Lim, B. J. Kim, and M. Cha, “Broadband optical parametric amplification at the communication band with periodically poled lithium niobate,” Opt. Express 14, 7210-7215 (2006). [CrossRef] [PubMed]
  9. D. Beitel, L. Carrion, L. R. Chen, and R. Maciejko, “Development of broadband sources based on semiconductor optical amplifiers and erbium-doped fiber amplifiers for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 243-250 (2008). [CrossRef]
  10. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22, 1494-1496 (1997). [CrossRef]
  11. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000). [CrossRef]
  12. A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1bandwidth,” Appl. Phys. Lett. 72, 147-149 (1998). [CrossRef]
  13. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23, 1283-1285 (1998). [CrossRef]
  14. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003). [CrossRef]
  15. D. Kraemer, R. Hua, M. L. Cowan, K. Franjic, and R. J. D. Miller, “Ultrafast noncollinear optical parametric chirped pulse amplification in KTiOAsO4,” Opt. Lett. 31, 981-983 (2006). [CrossRef] [PubMed]
  16. D. Kraemer, M. L. Cowan, R. Z. Hua, K. Franjic, and R. D. Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24, 813-818 (2007). [CrossRef]
  17. H. K. Nienhuys and H. J. Bakker, “Noncollinear optical parametric amplification in potassium titanyl phosphate pumped at 800 nm,” Appl. Opt. 47, 2870-2873 (2008). [CrossRef] [PubMed]
  18. G. Cirmi, D. Brida, C. Manzoni, M. Marangoni, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses in the near-infrared from a noncollinear optical parametric amplifier,” Opt. Lett. 32, 2396-2398 (2007). [CrossRef] [PubMed]
  19. O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16, 3949-3954 (2008). [CrossRef] [PubMed]
  20. P. Di Trapani, A. Andreoni, C. Solcia, P. Foggi, R. Danielius, A. Dubietis, and A. Piskarskas, “Matching of group velocities in three-wave parametric interaction with femtosecond pulses and application to traveling-wave generators,” J. Opt. Soc. Am. B 12, 2237-2244 (1995). [CrossRef]
  21. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292-1294 (1998). [CrossRef]
  22. T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B 70, S239-S246 (2000). [CrossRef]
  23. T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13, 1671-1682 (2002). [CrossRef]
  24. T. Kobayashi, in Femtosecond Optical Frequency Comb: Principle, Operation and Applications, edited by J.Ye and S.T.Cundiff (Springer, Berlin, 2005), pp. 133-175. [CrossRef]
  25. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28, 1759-1763 (1996). [CrossRef]
  26. G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70, 1-9 (2000). [CrossRef]
  27. Z. Bor and B. Racz, “Group-velocity dispersion in prisms and its application to pulse-compression and traveling-wave excitation,” Opt. Commun. 54, 165-170 (1985). [CrossRef]
  28. K. Osvay, A. P. Kovacs, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatari, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10, 213-220 (2004). [CrossRef]
  29. S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12, 4399-4410 (2004). [CrossRef] [PubMed]
  30. P. Tzankov, J. Zheng, M. Mero, D. Polli, C. Manzoni, and G. Cerullo, “300 μJ noncollinear optical parametric amplifier in the visible at 1 kHz repetition rate,” Opt. Lett. 31, 3629-3631 (2006). [CrossRef] [PubMed]
  31. C. P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, “Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti: sapphire oscillator,” Opt. Lett. 29, 1369-1371 (2004). [CrossRef] [PubMed]
  32. N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett. 30, 567-569 (2005). [CrossRef] [PubMed]
  33. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, “Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification,” Opt. Express 13, 4903-4908 (2005). [CrossRef] [PubMed]
  34. S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express 14, 8168-8177 (2006). [CrossRef] [PubMed]
  35. F. Tavella, A. Marcinkevicius, and F. Krausz, “90 mJ parametric chirped pulse amplification of 10 fs pulses,” Opt. Express 14, 12822-12827 (2006). [CrossRef] [PubMed]
  36. F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevicius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32, 2227-2229 (2007). [CrossRef] [PubMed]
  37. S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge, and S. Watanabe, “1.5 mJ, 6.4 fs parametric chirped-pulse amplification system at 1 kHz,” Opt. Lett. 32, 2487-2489 (2007). [CrossRef] [PubMed]
  38. S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, “5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz,” Opt. Express 16, 14341-14352 (2008). [CrossRef] [PubMed]
  39. J. A. Fulop, Z. Major, A. Henig, S. Kruber, R. Weingartner, T. Clausnitzer, E. B. Kley, A. Tunnermann, V. Pervak, A. Apolonski, J. Osterhoff, R. Horlein, F. Krausz, and S. Karsch, “Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses,” New J. Phys. 9, 438 (2007). [CrossRef]
  40. A. Smith, “SNLO software package,” http://www.as-photonics.com/?q=SNLO.
  41. W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, edited by M.Bass (McGraw-Hill, New York, 1995), pp. 33.3-33.83.
  42. D. Bodlaki and E. Borguet, “Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy,” Rev. Sci. Instrum. 71, 4050-4056 (2000). [CrossRef]
  43. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1999).
  44. T. D. Chinh, W. Seibt, and K. Siegbahn, “Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe,” J. Appl. Phys. 90, 2612-2614 (2001). [CrossRef]
  45. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150-152 (1984). [CrossRef] [PubMed]
  46. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A Opt. Image Sci. Vis 1, 1003-1006 (1984). [CrossRef]
  47. “Newport Corporation, Application Note 29: Prism Compressor for Ultrashort Laser Pulses,”http://www.newport.com/file_store/Optics_and_Mechanics/AppsNote29.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited