OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 973–980

Analysis of the optical force dependency on beam polarization: dielectric/metallic spherical shell in a Gaussian beam

Juntao Xi and Malin Premaratne  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 973-980 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We carry out a detailed numerical simulation study to investigate the dependency of optical force on beam polarization. Using the well-known finite-difference time domain method and Maxwell’s stress tensor, we consider general dielectric (e.g., glass) or metallic (e.g., gold) spherical shells immersed in a Gaussian optical beam. Our results show that TE and TM polarized Gaussian beams exert different amounts of optical force depending on the shell dimensions and material properties. We specifically show that purely dielectric shells do not experience different optical forces due to polarization differences but TM polarized beams exert higher optical force on metallic shells than equivalent TM polarized beams.

© 2009 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Physical Optics

Original Manuscript: January 9, 2009
Manuscript Accepted: February 26, 2009
Published: April 10, 2009

Juntao Xi and Malin Premaratne, "Analysis of the optical force dependency on beam polarization: dielectric/metallic spherical shell in a Gaussian beam," J. Opt. Soc. Am. B 26, 973-980 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin, J. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769-771 (1987). [CrossRef] [PubMed]
  3. J. Guck, R. Ananthakrishnan, C. C. Cunningham, and J. Kas, “Stretching biological cells with light,” J. Phys. Condens. Matter 14, 4843-4856 (2002). [CrossRef]
  4. D. T. Chiu and R. N. Zare, “Biased diffusion, optical trapping, and manipulation of single molecules in solution,” J. Am. Chem. Soc. 118, 6512-6513 (1996). [CrossRef]
  5. B. Lincoln, H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck, “Deformability-based flow cytometry,” Cytometry, Part A 59A, 203-209 (2004). [CrossRef]
  6. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095-13100 (2006). [CrossRef] [PubMed]
  7. M. Premaratne, E. Premaratne, and A. Lowery, “The photon transport equation for turbid biological media with spatially varying isotropic refractive index,” Opt. Express 13, 389-399 (2005). [CrossRef] [PubMed]
  8. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002). [CrossRef] [PubMed]
  9. A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13, 2321-2336 (2005). [CrossRef] [PubMed]
  10. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE Press, 1998).
  11. D. A. White, “Numerical modeling of optical gradient traps using the vector finite element method,” J. Comput. Phys. 159, 13-37 (2000). [CrossRef]
  12. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  13. S. H. Simpson and S. Hanna, “Numerical calculation of interparticle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23, 1419-1431 (2006). [CrossRef]
  14. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  15. A. Kank, G. Kumbhar, and S. Kulkarni, “Coupled magneto-mechanical field computations,” in Proceedings of Power Electronics, Drives and Energy Systems, PEDES '06 International Conference (IEEE, 2006), pp. 1-4. [CrossRef]
  16. J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005). [CrossRef]
  17. A. Taflove, K. Umashankar, and T. Jurgens, “Validation of FD-TD modeling of the radar cross section of three-dimensional structures spanning up to nine wavelengths,” IEEE Trans. Antennas Propag. 33, 662-666 (1985). [CrossRef]
  18. B. Maes, P. Bienstman, and R. Baets, “Bloch modes and self-localized waveguides in nonlinear photonic crystals,” J. Opt. Soc. Am. B 22, 613-619 (2005). [CrossRef]
  19. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  20. A. Agrawal and A. Sharma, “Perfectly matched layer in numerical wave propagation: factors that affect its performance,” Appl. Opt. 43, 4225-4231 (2004). [CrossRef] [PubMed]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  22. M. Premaratne and S. K. Halgamuge, “Rigorous analysis of numerical phase and group velocity bounds in Yee's FDTD grid,” IEEE Microw. Wirel. Compon. Lett. 17, 556-558 (2007). [CrossRef]
  23. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  24. J. V. Stewart, Intermediate Electromagnetic Theory (World Scientific, 2001).
  25. P. G. Etchegoin, E. C. L. Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef] [PubMed]
  26. H. X. Zheng and D. Y. Yu, “Simulation of ultrashort laser pulse propagation in silica Fiber by FDTD,” Int. J. Infrared Millim. Waves 25, 799-807 (2004). [CrossRef]
  27. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited