OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 981–986

Limited-diffraction light propagation with axicon-shape photonic crystals

H. Kurt  »View Author Affiliations

JOSA B, Vol. 26, Issue 5, pp. 981-986 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetic beams are subject to spatial spreading as they propagate. I have investigated the light propagation passing through a finite-aperture, which is obtained by two-dimensional square-lattice photonic crystals (PCs). It is found that the beam that is coupled to the free-space by exiting the axicon-shape PC resists considerably against the diffraction. The inspection of the beam profile in the transverse to the propagation direction reveals the appearance of the side-lobes, and I have attributed the limited-diffraction beam propagation to these artificially created lobes. I optimize the length of the aperture while keeping the width constant and show that an order of magnitude improvement for beating the diffraction length is achievable. The advantages of the presented PC-based axicon over the bulk refractive axicons are the compactness and integrated nature of the former one, in addition to the flexibility of engineering individual unit cells of PC structure.

© 2009 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(350.5500) Other areas of optics : Propagation
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: December 9, 2008
Revised Manuscript: March 10, 2009
Manuscript Accepted: March 11, 2009
Published: April 10, 2009

H. Kurt, "Limited-diffraction light propagation with axicon-shape photonic crystals," J. Opt. Soc. Am. B 26, 981-986 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]
  2. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  3. J. Rosen, B. Salik, A. Yariv, and H. Liu, “Pseudonondiffracting slitlike beam and its analogy to the pseudonondispersing pulse,” Opt. Lett. 20, 423-425 (1995). [CrossRef] [PubMed]
  4. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15-28 (2005). [CrossRef]
  5. V. Magni, “Optimum beams for efficient frequency mixing in crystals with second order nonlinearity,” Opt. Commun. 184, 245-255 (2000). [CrossRef]
  6. G. Gadonas, V. Jarutis, R. Paskauskas, V. Smilgevicius, A. Stabinis, and V. Vaicaitis, “Self-action of Bessel beam in nonlinear medium,” Opt. Commun. 196, 309-316 (2001). [CrossRef]
  7. M. Florjanczyk and R. Tremblay, “Guiding of atoms in a travelling-wave laser trap formed by the axicon,” Opt. Commun. 73, 448-451 (1989). [CrossRef]
  8. V. Garces-Chavez, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145-147 (2002). [CrossRef] [PubMed]
  9. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657-659 (2003). [CrossRef] [PubMed]
  10. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245 (2002). [CrossRef]
  11. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239-245 (2000). [CrossRef]
  12. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 269, 1101-1103 (2002). [CrossRef]
  13. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001). [CrossRef]
  14. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401-1404 (1993). [CrossRef] [PubMed]
  15. M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12, 5887-5895 (2004). [CrossRef] [PubMed]
  16. M. Erdelyi, Z. L. Horvath, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287-292 (1997). [CrossRef]
  17. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976-978 (2007). [CrossRef] [PubMed]
  18. I. Golub, “Solid immersion axicon: maximizing nondiffracting or Bessel beam resolution,” Opt. Lett. 32, 2161-2163 (2007). [CrossRef] [PubMed]
  19. N. Al-Ababneh and M. Testorf, “Analysis of free space optical interconnects based on non-diffracting beams,” Opt. Commun. 242, 393-400 (2004). [CrossRef]
  20. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A: Mater. Sci. Process. A84, 423-430 (2006). [CrossRef]
  21. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264-267 (1979). [CrossRef]
  22. D. M. Greenberger, “Comment on nonspreading wave packets,” Am. J. Phys. 48, 256 (1980). [CrossRef]
  23. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979-981 (2007). [CrossRef] [PubMed]
  24. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007). [CrossRef]
  25. S. Fujiwara, “Optical properties of conic surfaces. I. Reflecting cone,” J. Opt. Soc. Am. 52, 287-292 (1962). [CrossRef]
  26. A. Vasara, J. Turunen, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959-3962 (1988). [CrossRef] [PubMed]
  27. L. Niggel, T. Lanz, and M. Maier, “Properties of Bessel beams generated by periodic grating of circular symmetry,” J. Opt. Soc. Am. A 14, 27-33 (1997). [CrossRef]
  28. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932-942 (1991). [CrossRef]
  29. J. H. McLeod, “The axicon: A new type of optical element,” J. Opt. Soc. Am. 44, 592-597 (1954). [CrossRef]
  30. R. Grunwald, U. Grieber, F. Tschirschwitz, E. T. J. Nibbering, T. Elsaesser, V. Kebbel, H.-J. Hartmann, and W. Jueptner, “Generation of femtosecond Bessel beams with microaxicon arrays,” Opt. Lett. 25, 981-983 (2000). [CrossRef]
  31. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer generated holograms,” J. Opt. Soc. Am. A 6, 1748-1754 (1989). [CrossRef] [PubMed]
  32. T. Grosjean, F. Baida, and D. Courjon, “Conical optics: the solution to confine light,” Appl. Opt. 46, 1994-2000 (2007). [CrossRef] [PubMed]
  33. K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125-129 (1989). [CrossRef]
  34. R. Fischer, D. N. Neshev, S. Lopez-Aguayo, A. S. Desyatnikov, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Observation of light localization in modulated Bessel optical lattices,” Opt. Express 14, 2825-2830 (2006). [CrossRef] [PubMed]
  35. A. Taflove, Computational Electrodynamics--The Finite-Difference Time-Domain Method (Artech House, 2000).
  36. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  37. E. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004). [CrossRef]
  38. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004). [CrossRef] [PubMed]
  39. H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photon. Technol. Lett. 20, 1682-1684 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited