OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 987–997

Accurate calculation of the local density of optical states in inverse-opal photonic crystals

Ivan S. Nikolaev, Willem L. Vos, and A. Femius Koenderink  »View Author Affiliations


JOSA B, Vol. 26, Issue 5, pp. 987-997 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000987


View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the local density of optical states (LDOS) in titania and silicon inverse opals—three-dimensional photonic crystals that have been realized experimentally. We used the H-field plane-wave expansion method to calculate the density of states and the projected LDOS, which are directly relevant for spontaneous emission dynamics and strong coupling. We present the first quantitative analysis of the frequency resolution and of the accuracy of the calculated LDOS. We have calculated the projected LDOS for many different emitter positions and orientations in inverse opals in order to supply a theoretical interpretation for recent emission experiments and as reference results for future experiments and theory by other workers. The results show that the LDOS in inverse opals strongly depends on the crystal lattice parameter as well as on the position and orientation of emitting dipoles.

© 2009 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(270.5580) Quantum optics : Quantum electrodynamics
(290.4210) Scattering : Multiple scattering
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: January 8, 2009
Revised Manuscript: March 2, 2009
Manuscript Accepted: March 6, 2009
Published: April 10, 2009

Citation
Ivan S. Nikolaev, Willem L. Vos, and A. Femius Koenderink, "Accurate calculation of the local density of optical states in inverse-opal photonic crystals," J. Opt. Soc. Am. B 26, 987-997 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-5-987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton U. Press, 2008).
  2. Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer, 2001).
  3. V. P. Bykov, “Spontaneous emission in a periodic structure,” Sov. Phys. JETP 35, 269-273 (1972).
  4. V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron. 4, 861-871 (1975). [CrossRef]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  6. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  8. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  9. M. Grätzel, “Photoelectrochemical cells,” Nature 414, 338-344 (2001). [CrossRef] [PubMed]
  10. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265-270 (1996). [CrossRef]
  11. N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002). [CrossRef]
  12. P. Kristensen, A. F. Koenderink, P. Lodahl, B. Tromborg, and J. Mørk, “Fractional decay of quantum dots in real photonic crystals,” Opt. Lett. 33, 1557-1559 (2008). [CrossRef] [PubMed]
  13. Photonic Crystals. Advances in Design, Fabrication, and Characterization, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, ed. (Wiley-VCH Verlag GmbH, 2004). [CrossRef]
  14. J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802-804 (1998). [CrossRef]
  15. J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486-4499 (2001). [CrossRef]
  16. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897-901 (1998). [CrossRef] [PubMed]
  17. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. López, F. Meseguer, H. Míguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000). [CrossRef] [PubMed]
  18. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001). [CrossRef] [PubMed]
  19. A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk, and W. L. Vos, “Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals,” Phys. Rev. Lett. 88, 143903 (2002). [CrossRef] [PubMed]
  20. S. Ogawa, M. Imada, S. Yoshimoto, M. Okato, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227-229 (2004). [CrossRef] [PubMed]
  21. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004). [CrossRef] [PubMed]
  22. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005). [CrossRef] [PubMed]
  23. A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005). [CrossRef]
  24. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296-1298 (2005). [CrossRef] [PubMed]
  25. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  26. B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states in two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93, 094102 (2008). [CrossRef]
  27. T. Suzuki and P. K. L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570-582 (1995). [CrossRef]
  28. R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 1438-1442 (2000). [CrossRef]
  29. C. Hermann and O. Hess, “Modified spontaneous emission rate in an inverted-opal structure with complete photonic bandgap,” J. Opt. Soc. Am. B 19, 3013-3018 (2002). [CrossRef]
  30. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission control in two-dimensional photonic crystal membranes,” J. Opt. Soc. Am. B 23, 1196-1206 (2006). [CrossRef]
  31. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  32. Z.-Y. Li, L.-L. Lin, and Z.-Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341-4344 (2000). [CrossRef] [PubMed]
  33. R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Local density of states in three-dimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67, 155114 (2003). [CrossRef]
  34. D. P. Fussell, R. C. McPhedran, and C. M. de Sterke, “Three-dimensional Green's tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 066608 (2004). [CrossRef]
  35. I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007). [CrossRef]
  36. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005). [CrossRef]
  37. A. A. Krokhin and P. Halevi, “Influence of weak dissipation on the photonic band structure of periodic composites,” Phys. Rev. B 53, 1205-1214 (1996). [CrossRef]
  38. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  39. H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962-13972 (1992). [CrossRef]
  40. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  41. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835-16844 (1994). [CrossRef]
  42. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
  43. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  44. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integration,” Phys. Rev. B 13, 5188-5192 (1976). [CrossRef]
  45. G. Gilat, “Analysis of methods for calculating spectral properties in solids,” J. Comput. Phys. 10, 432-465 (1972). [CrossRef]
  46. P. E. Blöchl, O. Jepsen, and O. K. Andersen, “Improved tetrahedron method for Brillouin-zone integrations,” Phys. Rev. B 49, 16223-16233 (1994). [CrossRef]
  47. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM Publications, 1998).
  48. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  49. M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730-2733 (1999). [CrossRef]
  50. W. L. Vos and H. M. van Driel, “Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap,” Phys. Lett. A 272, 101-106 (2000). [CrossRef]
  51. P. J. Harding, “Photonic crystals modified by optically resonant systems,” Ph.D. thesis (University of Twente, 2008), ISBN 978-90-365-2683-8, available from http://www.photonicbandgaps.com.
  52. L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Spontaneous emission in nanoscopic dielectric particles,” Opt. Lett. 28, 1736-1738 (2003). [CrossRef] [PubMed]
  53. H. Miyazaki and K. Ohtaka, “Near-field images of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 58, 6920-6937 (1998). [CrossRef]
  54. A. F. Koenderink, “Emission and transport of light in photonic crystals,” Ph.D. thesis (University of Amsterdam, 2003). ISBN 90-9016903-2, available from http://www.koenderink.info.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: CSV (1 KB)     
» Media 2: CSV (57 KB)     
» Media 3: CSV (2 KB)     
» Media 4: CSV (4 KB)     
» Media 5: CSV (4 KB)     
» Media 6: CSV (3 KB)     
» Media 7: CSV (4 KB)     
» Media 8: CSV (3 KB)     
» Media 9: CSV (4 KB)     
» Media 10: CSV (64 KB)     
» Media 11: CSV (2 KB)     
» Media 12: CSV (5 KB)     
» Media 13: CSV (5 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited