OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1162–1168

Adiabatic passage scheme for entanglement between two distant microwave cavities interacting with single-molecule magnets

Xin-You Lü, Li-Li Zheng, Pei Huang, Jin Li, and Xiaoxue Yang  »View Author Affiliations


JOSA B, Vol. 26, Issue 6, pp. 1162-1168 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001162


View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a scheme for deterministically generating entanglement between two distant microwave cavities that interact with two single-molecule magnets (SMMs) and are connected by an optical fiber. In our scheme, the spontaneous decay of SMMs and photons damping in the fiber are efficiently suppressed via employing the stimulated Raman adiabatic passage (STIRAP). To check the experimental feasibility of our scheme, we numerically simulated the effects of some deviations of experimental parameters, and the numerical simulation shows that our scheme is robust with respect to those experimental parameters. We also discuss the effects of cavity damping, and as a result our proposal is good enough to demonstrate the generation of entanglement of microwave cavities within current experimental technology.

© 2009 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Quantum Optics

History
Original Manuscript: October 6, 2008
Revised Manuscript: March 10, 2009
Manuscript Accepted: April 1, 2009
Published: May 7, 2009

Citation
Xin-You Lü, Li-Li Zheng, Pei Huang, Jin Li, and Xiaoxue Yang, "Adiabatic passage scheme for entanglement between two distant microwave cavities interacting with single-molecule magnets," J. Opt. Soc. Am. B 26, 1162-1168 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-6-1162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935). [CrossRef]
  2. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195-200 (1964).
  3. D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990). [CrossRef]
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  5. C. H. Bennett and D. P. Vincenzo, “Quantum information and computation,” Nature (London) 404, 247-255 (2000). [CrossRef]
  6. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997). [CrossRef]
  7. R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007). [CrossRef]
  8. A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  9. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083-4086 (1995). [CrossRef] [PubMed]
  10. W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108 (2005). [CrossRef]
  11. W.-X. Yang, Z.-X. Gong, W.-B. Li, and X.-X. Yang, “Simple scheme for implementing the Deutsch-Jozsa algorithm in a thermal cavity,” J. Phys. A 40, 155-161 (2007). [CrossRef]
  12. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000). [CrossRef] [PubMed]
  13. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef] [PubMed]
  14. X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003). [CrossRef] [PubMed]
  15. L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003). [CrossRef] [PubMed]
  16. S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004). [CrossRef]
  17. X.-Y. Lu, J.-B. Liu, L.-G. Si, and X. Yang, “Continuous-variable entanglement in a two-mode four-level single-atom laser,” J. Phys. B 41, 035501 (2008). [CrossRef]
  18. X.-Y. Lu, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008). [CrossRef]
  19. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232-4235 (2000). [CrossRef] [PubMed]
  20. S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003). [CrossRef] [PubMed]
  21. P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007). [CrossRef]
  22. C. G. Christopher, “Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state,” Phys. Rev. A 54, R2529-R2532 (1996). [CrossRef]
  23. J. A. Bergou and M. Hillery, “Generation of highly entangled field states in multiple micromaser cavities,” Phys. Rev. A 55, 4585-4588 (1997). [CrossRef]
  24. D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003). [CrossRef]
  25. J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005). [CrossRef]
  26. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998). [CrossRef]
  27. D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003). [CrossRef] [PubMed]
  28. J. H. Reina, L. Quiroga, and N. F. Johnson, “Quantum entanglement and information processing via excitons in optically driven quantum dots,” Phys. Rev. A 62, 012305 (2000). [CrossRef]
  29. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988). [CrossRef]
  30. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741-6744 (1989). [CrossRef] [PubMed]
  31. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998). [CrossRef]
  32. N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535-4546 (1999). [CrossRef]
  33. Z. Kis and F. Renzoni, “Qubit rotation by stimulated Raman adiabatic passage,” Phys. Rev. A 65, 032318 (2002). [CrossRef]
  34. H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70, 012305 (2004). [CrossRef]
  35. S.-B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005). [CrossRef] [PubMed]
  36. X. Lacour, N. Sangouard, S. Guérin, and H. R. Jauslin, “Arbitrary state controlled-unitary gate by adiabatic passage,” Phys. Rev. A 73, 042321 (2006). [CrossRef]
  37. M. Amniat-Talab, S. Guéin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005). [CrossRef]
  38. M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72, 012339 (2005). [CrossRef]
  39. L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007). [CrossRef]
  40. S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008). [CrossRef]
  41. W. Ji, C. Wu, S. J. van Enk, and M. G. Raymer, “Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,” Phys. Rev. A 75, 052305 (2007). [CrossRef]
  42. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001). [CrossRef]
  43. A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001). [CrossRef]
  44. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141-143 (1993). [CrossRef]
  45. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996). [CrossRef]
  46. C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997). [CrossRef]
  47. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830-3833 (1996). [CrossRef] [PubMed]
  48. W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133-135 (1999). [CrossRef] [PubMed]
  49. M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789-793 (2001). [CrossRef] [PubMed]
  50. E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004). [CrossRef]
  51. I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003). [CrossRef]
  52. A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006). [CrossRef]
  53. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007). [CrossRef]
  54. Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007). [CrossRef]
  55. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007). [CrossRef]
  56. X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008). [CrossRef]
  57. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004). [CrossRef]
  58. Y. Wu, K. W. Chan, M.-C. Chu, and P. T. Leung, “Radiation modes of a cavity with a resonantly oscillating boundary,” Phys. Rev. A 59, 1662-1666 (1999). [CrossRef]
  59. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 14, p. 409.
  60. Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631-633 (2003). [CrossRef] [PubMed]
  61. Y. Wu and R. Côté, “Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate,” Phys. Rev. A 65, 053603 (2002). [CrossRef]
  62. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003). [CrossRef]
  63. S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008). [CrossRef] [PubMed]
  64. A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007). [CrossRef] [PubMed]
  65. K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007). [CrossRef]
  66. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  67. P. E. Barclay, K. Srinivasan, and O. Painter, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited