OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1176–1187

Surface plasmon polaritons and surface phonon polaritons on metallic and semiconducting spheres: Exact and semiclassical descriptions

Stéphane Ancey, Yves Décanini, Antoine Folacci, and Paul Gabrielli  »View Author Affiliations


JOSA B, Vol. 26, Issue 6, pp. 1176-1187 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001176


View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the interaction of an electromagnetic field with a nonabsorbing or absorbing dispersive sphere in the framework of complex angular momentum techniques. We assume that the dielectric function of the sphere presents a Drude-like behavior or an ionic crystal behavior modelling metallic and semiconducting materials. We more particularly emphasize and interpret the modifications induced in the resonance spectrum by absorption. We prove that “resonant surface-polariton modes” are generated by a unique surface wave, i.e., a surface- (plasmon or phonon) polariton, propagating close to the sphere surface. This surface polariton corresponds to a particular Regge pole of the electric part (TM) of the S matrix of the sphere. From the associated Regge trajectory, we can construct semiclassically the spectrum of the complex frequencies of the resonant surface polariton modes, which can be considered as Breit–Wigner-type resonances. Furthermore, by taking into account the Stokes phenomenon, we derive an asymptotic expression for the position in the complex angular momentum plane of the surface polariton Regge pole. We then describe semiclassically the surface polariton and provide analytical expressions for its dispersion relation and its damping in the nonabsorbing and absorbing cases. In these analytic expressions, we more particularly exhibit well-isolated terms directly linked to absorption. Finally, we explain why the photon-sphere system can be considered as an artificial atom (a “plasmonic atom” or “phononic atom”), and we briefly discuss the implication of our results in the context of the Casimir effect.

© 2009 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(290.0290) Scattering : Scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 10, 2009
Manuscript Accepted: March 3, 2009
Published: May 11, 2009

Citation
Stéphane Ancey, Yves Décanini, Antoine Folacci, and Paul Gabrielli, "Surface plasmon polaritons and surface phonon polaritons on metallic and semiconducting spheres: Exact and semiclassical descriptions," J. Opt. Soc. Am. B 26, 1176-1187 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-6-1176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Ancey, Y. Décanini, A. Folacci, and P. Gabrielli, “Surface polaritons on metallic and semiconducting cylinders: A complex angular momentum analysis,” Phys. Rev. B 70, 245406 (2004). [CrossRef]
  2. R. Fuchs and K. L. Kliewer, “Optical modes of vibration in an ionic crystal sphere,” J. Opt. Soc. Am. 58, 319-330 (1968). [CrossRef]
  3. R. Englman and R. Ruppin, “Optical lattice vibrations in finite ionic crystals: I,” J. Phys. C 1, 614-629 (1968). [CrossRef]
  4. R. Ruppin and R. Englman, “Optical lattice vibrations in finite ionic crystals: II,” J. Phys. C 1, 630-643 (1968). [CrossRef]
  5. R. Englman and R. Ruppin, “Optical lattice vibrations in finite ionic crystals: III,” J. Phys. C 1, 1515-1531 (1968). [CrossRef]
  6. R. Ruppin, in Electromagnetic Surface Modes, A.D.Boardman, ed. (Wiley, 1982).
  7. S. S. Martinos, “Surface electromagnetic modes in metal spheres,” Phys. Rev. B 31, 2029-2032 (1985). [CrossRef]
  8. R. Ruppin, “Electromagnetic energy in dispersive spheres,” J. Opt. Soc. Am. A 15, 524-527 (1998). [CrossRef]
  9. B. E. Sernelius, Surface Modes in Physics (Wiley-VCH Verlag, 2001). [CrossRef]
  10. H. T. Dung, L. Knöll, and D.-G. Welsch, “Decay of an excited atom near an absorbing microsphere,” Phys. Rev. A 64, 013804 (2001). [CrossRef]
  11. J. E. Inglesfield, J. M. Pitarke, and R. Kemp, “Plasmon bands in metallic nanostructures,” Phys. Rev. B 69, 233103 (2004). [CrossRef]
  12. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1-87 (2007). [CrossRef]
  13. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56-63 (2007). [CrossRef] [PubMed]
  14. R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed. (Springer-Verlag, 1982),
  15. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, 1992). [CrossRef]
  16. J. W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge U. Press, 2000). [CrossRef]
  17. R. D. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (Academic, 1973).
  18. M. V. Berry, “Uniform asymptotic smoothing of stokes's discontinuities,” Proc. R. Soc. London, Ser. A 422, 7-21 (1989). [CrossRef]
  19. M. V. Berry and C. J. Howls, “Hyperasymptotics,” Proc. R. Soc. London A 430, 653-667 (1990).
  20. H. Segur, S. Tanveer, and H. Levine, Asymptotics Beyond All Orders (Plenum, 1991).
  21. S. Ancey, Y. Décanini, A. Folacci, and P. Gabrielli, “Surface polaritons on left-handed cylinders: a complex angular momentum analysis,” Phys. Rev. B 72, 085458 (2005). [CrossRef]
  22. S. Ancey, Y. Décanini, A. Folacci, and P. Gabrielli, “Surface polaritons on left-handed spheres,” Phys. Rev. B 76, 195413 (2007). [CrossRef]
  23. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).
  24. M. Fox, Optical Properties of Solids (Oxford University Press, 2001).
  25. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  26. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  27. M. V. Berry, “Attenuation and focusing of electromagnetic surface waves rounding gentle bends,” J. Phys. A 8, 1952-1971 (1975). [CrossRef]
  28. G. N. Watson, Theory of Bessel Functions (Cambridge U. Press, 1995), 2nd ed.
  29. H. M. Nussenzveig, “High-frequency scattering by an impenetrable sphere,” Ann. Phys. (N.Y.) 34, 23-95 (1965). [CrossRef]
  30. H. Raether, Surface Plasmons Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, 1988).
  31. T. Ito and K. Sakoda, “Photonic bands of metallic systems II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001). [CrossRef]
  32. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  33. D. V. Guzatov and V. V. Klimov, Plasmonic Atoms and Plasmonic Molecules (arXiv:physics/0703251).
  34. S. K. Lamoreaux, “Demonstration of the Casimir force in the 0.6to6 μm, range,” Phys. Rev. Lett. 78, 5-8 (1997). [CrossRef]
  35. M. Bordag, U. Mohideen, and V. M. Mostepanenko, “New developments in the Casimir effect,” Phys. Rep. 353, 1-205 (2001). [CrossRef]
  36. A. Bulgac, P. Magierski, and A. Wirzba, “Scalar Casimir effect between Dirichlet spheres or a plate and a sphere,” Phys. Rev. D 73, 025007 (2006). [CrossRef]
  37. C. Genet, F. Intravaia, A. Lambrecht, and S. Reynaud, “Electromagnetic vacuum fluctuations, Casimir and van der Waals forces,” Ann. Fond. Louis Broglie 29, 331-348 (2004).
  38. C. Henkel, K. Joulain, J.-P. Mulet, and J.-J. Greffet, “Coupled surface polaritons and the Casimir force,” Phys. Rev. A 69, 023808 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited