OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1203–1208

Long-period fiber gratings fabricated by use of defocused C O 2 laser beam for polarization-dependent loss enhancement

Minwei Yang, Yuhua Li, and D. N. Wang  »View Author Affiliations

JOSA B, Vol. 26, Issue 6, pp. 1203-1208 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An alternative of the long-period fiber grating (LPFG) fabrication method has been developed in this work by use of defocused C O 2 laser pulse scanning, which is achieved by moving the laser beam focus plane slightly away from the fiber cladding surface. By increasing the distance shift from the cladding surface, the area with refractive index change also increases on the side with laser irradiation, which leads to an apparent mode field profile distortion at the resonant wavelength of the LPFG. Such a distortion in the mode field profile significantly increases the polarization-dependent loss of the LPFG. Moreover, for the cascaded LPFGs fabricated by use of this technique, the maximum polarization-dependent loss obtained can be largely increased from 7 to 17.8 dB , with a maximum dip in the wavelength change of 0.45 nm .

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.5440) Optical devices : Polarization-selective devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Diffraction and Gratings

Original Manuscript: January 23, 2009
Revised Manuscript: March 17, 2009
Manuscript Accepted: April 8, 2009
Published: May 12, 2009

Minwei Yang, Yuhua Li, and D. N. Wang, "Long-period fiber gratings fabricated by use of defocused CO2 laser beam for polarization-dependent loss enhancement," J. Opt. Soc. Am. B 26, 1203-1208 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255-266 (2002). [CrossRef]
  2. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber-grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302-303 (1998). [CrossRef]
  3. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320-1327 (2003). [CrossRef]
  4. Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long-period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89, 151105-151108 (2006). [CrossRef]
  5. T. Zhu, Y. J. Rao, J. L. Wang, and Y. Song, “A highly sensitive fiber-optic refractive index sensor based on an edge-written long-period fiber grating,” IEEE Photon. Technol. Lett. 19, 1946-1948 (2007). [CrossRef]
  6. A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616-617 (1997). [CrossRef]
  7. Y. W. Lee and B. Lee, “Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element,” IEEE Photon. Technol. Lett. 15, 795-797 (2003). [CrossRef]
  8. H. F. Xuan, W. Jin, J. Ju, Y. P. Wang, M. Zhang, Y. B. Liao, and M. H. Chen, “Hollow-core photonic bandgap fiber polarizer,” Opt. Lett. 33, 845-847 (2008). [CrossRef] [PubMed]
  9. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber,” Opt. Lett. 32, 1035-1037 (2007). [CrossRef] [PubMed]
  10. Y. P. Wang, D. N. Wang, W. Jin, H. L. Ho, and J. Ju, “Mode field profile and polarization dependence of long-period fiber gratings written by CO2 laser,” Opt. Commun. 281, 2522-2525 (2008). [CrossRef]
  11. R. Slavik, “Coupling to circularly asymmetric modes via long-period gratings made in a standard straight fiber,” Opt. Commun. 275, 90-93 (2007). [CrossRef]
  12. D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarization independence,” Electron. Lett. 34, 1416-1417 (1998). [CrossRef]
  13. M. Yan, S. Y. Luo, L. Zhan, Z. M. Zhang, and Yuxing Xia, “Triple-wavelength switchable Erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings,” Opt. Express 15, 3685-3691 (2007). [CrossRef] [PubMed]
  14. B. Lee, J. Cheong, and U. Paek, “Spectral polarization-dependent loss of cascaded long-period fiber gratings,” Opt. Lett. 27, 1096-1098 (2002). [CrossRef]
  15. T.-J. Ahn, B.-H. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Torsion sensing characteristics of optical fiber with a long-period grating pair,” Proc. SPIE 4579, 154-161 (2001). [CrossRef]
  16. T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, K. Takada, and A. J. Ikushima, “Fabrication of long-period fiber grating by CO2 laser-annealing in fiber-drawing process,” Electron. Lett. 43, 443-445 (2007). [CrossRef]
  17. H. S. Ryu, Y. Park, S. T. Oh, Y. Chung, and D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155-157 (2003). [CrossRef] [PubMed]
  18. B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657-1659 (2001). [CrossRef]
  19. B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6818-6823 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited