OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1209–1215

Control of transient regime of stimulated Raman scattering using hollow-core PCF

François Couny, Olivier Carraz, and Fetah Benabid  »View Author Affiliations


JOSA B, Vol. 26, Issue 6, pp. 1209-1215 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001209


View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Accurate control over the transient and steady-state regimes of stimulated Raman amplification is achieved in hydrogen-filled hollow-core photonic crystal fiber via the control of the fiber length and the internal gas pressure. The experimental evolution of the characteristic time that determines the limit between the two scattering regimes is shown to closely follow the theoretical prediction. Transient amplification is observed for pump-laser pulse lengths longer than 10 times the Raman dephasing time, opening new prospects for the generation of a coherent optical frequency comb using ultralong pump-laser pulses ( > 100 ns ) .

© 2009 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 19, 2009
Revised Manuscript: March 24, 2009
Manuscript Accepted: March 30, 2009
Published: May 13, 2009

Citation
François Couny, Olivier Carraz, and Fetah Benabid, "Control of transient regime of stimulated Raman scattering using hollow-core PCF," J. Opt. Soc. Am. B 26, 1209-1215 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-6-1209


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near-IR,” Proc. IRE 50, 2367 (1962).
  2. N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504-507 (1964). [CrossRef]
  3. C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969). [CrossRef]
  4. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering” Phys. Rev. A 2, 60-72 (1970). [CrossRef]
  5. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980-1993 (1981). [CrossRef]
  6. M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A 32, 332-344 (1985). [CrossRef] [PubMed]
  7. M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A 48, 1514-1525 (1993). [CrossRef] [PubMed]
  8. E. Sali, K. J. Mendham, J. W. G. Tisch, T. Halfmann, and J. P. Marangos, “High-order stimulated Raman scattering in a highly transient regime driven by a pair of ultrashort pulses,” Opt. Lett. 29, 495-497 (2004). [CrossRef] [PubMed]
  9. A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560-2563 (1999). [CrossRef]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002). [CrossRef] [PubMed]
  11. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultra-high efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004). [CrossRef] [PubMed]
  12. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,” Nature 434, 488-491 (2005). [CrossRef] [PubMed]
  13. F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-CW pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005). [CrossRef] [PubMed]
  14. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118-1121 (2007). [CrossRef] [PubMed]
  15. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85, 562-565 (2000). [CrossRef] [PubMed]
  16. M. G. Raymer and I. A. Walmsley, “The quantum coherence properties of stimulated Raman scattering,” Prog. Opt. 28, 181-270 (1990). [CrossRef]
  17. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99, 143903 (2007). [CrossRef] [PubMed]
  18. M. Graf, E. Arimondo, E. S. Fry, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, and S. Y. Zhu, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995). [CrossRef] [PubMed]
  19. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257-354 (1996). [CrossRef]
  20. E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge U. Press, 1984).
  21. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113-3123 (1986). [CrossRef] [PubMed]
  22. G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidth and lineshifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34, 1944-1951 (1986). [CrossRef] [PubMed]
  23. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472-473 (1953). [CrossRef]
  24. J. L. Carlsten and R. G. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19, 1407-1413 (1983). [CrossRef]
  25. R. W. Carlson and W. R. Fenner, “Absolute Raman scattering cross-section of molecular hydrogen,” Astron. J. 178, 551-556 (1972).
  26. W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” in Excimer Lasers-1983, C.K.Rhodes, H.Esser, and H.Pummer, eds. (AIP, 1983).
  27. M. G. Raymer, Z. W. Li, and I. A. Walmsley, “Temporal quantum fluctuations in stimulated raman scattering: Coherent-modes description,” Phys. Rev. Lett. 63, 1586-1589 (1989). [CrossRef] [PubMed]
  28. M. G. Raymer, “Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering,” J. Mod. Opt. 51, 1739-1759 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited