OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1216–1220

Laser frequency locking by dispersive response of atoms in transversal magnetic field

Taro Hasegawa and Mitsuyasu Deguchi  »View Author Affiliations

JOSA B, Vol. 26, Issue 6, pp. 1216-1220 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A robust laser-frequency-locking scheme to atomic transitions is proposed and demonstrated. In this scheme, dispersion of the Zeeman-shifted atoms instead of absorption in the dichroic atomic vapor laser lock (DAVLL) [ Appl. Opt. 37, 3295 (1998) ] is measured and used as an error signal for stabilization feedback. The error signal of the proposed scheme can provide a wide locking range. Experimental demonstration with the transition between 5 d D 3 2 2 and 6 p P 1 2 2 of Ba + is carried out for a grating feedback external-cavity laser diode at 650 nm .

© 2009 Optical Society of America

OCIS Codes
(020.7490) Atomic and molecular physics : Zeeman effect
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Atomic and Molecular Physics

Original Manuscript: March 10, 2009
Manuscript Accepted: March 31, 2009
Published: May 13, 2009

Taro Hasegawa and Mitsuyasu Deguchi, "Laser frequency locking by dispersive response of atoms in transversal magnetic field," J. Opt. Soc. Am. B 26, 1216-1220 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295-3298 (1998). [CrossRef]
  2. B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994). [CrossRef]
  3. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003). [CrossRef]
  4. A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B 40, 187-198 (2007). [CrossRef]
  5. M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008). [CrossRef]
  6. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001). [CrossRef]
  7. J. I. Kim, C. Y. Park, J. Y. Yoem, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245-247 (2003). [CrossRef] [PubMed]
  8. E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008). [CrossRef]
  9. K. Shimoda, Introduction to Laser Physics (Springer, 1984).
  10. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980). [CrossRef]
  11. A. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4 nm6s-6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351-3365 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited