OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1256–1262

Fabrication of an elastomeric rib waveguide Bragg grating filter

Cheng-Sheng Huang, Edwin Yue-Bun Pun, and Wei-Chih Wang  »View Author Affiliations

JOSA B, Vol. 26, Issue 6, pp. 1256-1262 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the design and fabrication of a Bragg grating device on a silicone-based elastomer rib waveguide, constructed using solvent-assisted microcontact molding and polymer casting techniques. The waveguide design utilizes polydimethylsiloxane (PDMS) and hard polydimethylsiloxane (hPDMS) polymers as core and cladding materials, with a period of 0.55 μ m , a depth of 350   nm , and a grating length of 6 mm. Fabrication is relatively simple, with the hPDMS/PDMS waveguide and gratings cast from a two-layer mold made of a phenolic resin-based positive photoresist and an epoxy Novolak resin-based negative photoresist. The mold we have designed has a demonstrated operational lifespan in excess of ten successful waveguide fabrications. The transmission spectra of the resulting gratings were measured, with test results showing a band-rejection gain of −17 dB and a 3 dB bandwidth of 3   nm at transmission.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides
(250.5460) Optoelectronics : Polymer waveguides
(350.2770) Other areas of optics : Gratings
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Optical Devices

Original Manuscript: February 14, 2009
Revised Manuscript: March 26, 2009
Manuscript Accepted: March 29, 2009
Published: May 27, 2009

Cheng-Sheng Huang, Edwin Yue-Bun Pun, and Wei-Chih Wang, "Fabrication of an elastomeric rib waveguide Bragg grating filter," J. Opt. Soc. Am. B 26, 1256-1262 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Fiber Optic Smart Structures, E.Udd, ed. (Wiley, 1995).
  2. Fiber Optic Sensors: An Introduction for Engineers and Scientists, E.Udd, ed. (Wiley, 1991).
  3. J. Meissner, W. Nowak, V. Slowik, and T. Klink, “Strain monitoring at a prestressed concrete bridge,” in Proceedings of the 12th International Conference on Optical Fibre Sensors, (Opt. Society of America, 1997), pp. 408-411.
  4. E. J. Friebele, “Fiber Bragg grating strain sensors: present and future applications in smart structures,” Optics & Photonics News 9, 33-37 (1998). [CrossRef]
  5. L. Bilro, J. L. Pinto, J. Oliveira, and R. Nogueira, “Gait monitoring with a wearable plastic optical sensor,” in 2008 IEEE Sensors (IEEE, 2008), pp. 787-790. [CrossRef]
  6. L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, “Design and evaluation of a wearable optical sensor for monitoring seated spinal posture,” in 2006 10th IEEE International Symposium on Wearable Computers (IEEE, 2006), pp. 70-73.
  7. J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Actuators A Phys. 126, 312-327 (2006). [CrossRef]
  8. W.-C. Wang, R. Panergo, and P. Reinhall, “Development of a microfabricated scanning endoscope using SU-8-based optical waveguide,” in Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems II (SPIE-Int. Soc. Opt. Eng, 2003), pp. 305-313.
  9. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE Journal of Selected Topics in Quantum Electronics 6, 54-68 (2000). [CrossRef]
  10. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999). [CrossRef]
  11. M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998). [CrossRef]
  12. N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995). [CrossRef]
  13. J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003). [CrossRef]
  14. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189-1195 (1993). [CrossRef]
  15. W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576-3578 (2001). [CrossRef]
  16. S. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122-2124 (2005). [CrossRef]
  17. J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766-1768 (1998). [CrossRef]
  18. C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007). [CrossRef]
  19. D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23, 2088-2093 (2005). [CrossRef]
  20. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002). [CrossRef]
  21. E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651-654 (1997). [CrossRef]
  22. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973). [CrossRef]
  23. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233-252 (1977). [CrossRef]
  24. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823-1824 (1999). [CrossRef]
  25. C.-S. Huang and W.-C. Wang, “Flexible polymeric rib waveguide with self-align couplers system,” J. Vac. Sci. Technol. B 26, L13-L18 (2008). [CrossRef]
  26. R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651-652 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited