OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1315–1320

Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco  »View Author Affiliations

JOSA B, Vol. 26, Issue 7, pp. 1315-1320 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (565 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a technique to lock the frequency of a laser to a transition between two excited states in Rb vapor using a two-photon process in the presence of a weak magnetic field. We use a ladder configuration from specific hyperfine sublevels of the 5 S 1 2 , 5 P 3 2 , and 5 D 5 2 levels. This atomic configuration can show electromagnetically induced transparency and absorption processes. The error signal comes from the difference in the transparency or absorption felt by the two orthogonal polarizations of the probe beam. A simplified model is in good quantitative agreement with the observed signals for the experimental parameters. We have used this technique to lock the frequency of the laser up to 1.5 GHz off atomic resonance.

© 2009 Optical Society of America

OCIS Codes
(020.7490) Atomic and molecular physics : Zeeman effect
(270.1670) Quantum optics : Coherent optical effects
(300.1030) Spectroscopy : Absorption
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 22, 2009
Revised Manuscript: May 5, 2009
Manuscript Accepted: May 5, 2009
Published: June 12, 2009

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, "Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption," J. Opt. Soc. Am. B 26, 1315-1320 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007). [CrossRef]
  2. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008). [CrossRef]
  3. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009). [CrossRef]
  4. D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78, 062506 (2008). [CrossRef]
  5. R. Boucher, M. Breton, N. Cyr, and M. Tetu, “Dither-free absolute frequency locking of a 1.3 μm, dfb laser on Rb87,” IEEE Photonics Technol. Lett. 4, 327-329 (1992). [CrossRef]
  6. M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995). [CrossRef]
  7. A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium,” Opt. Lett. 12, 905-907 (2000). [CrossRef]
  8. S. Baluschev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, and N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock,” Appl. Opt. 39, 4970-4974 (2000). [CrossRef]
  9. A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008). [CrossRef]
  10. A. Pérez Galván, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95 (2009). [CrossRef]
  11. D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008). [CrossRef]
  12. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967(2004). [CrossRef]
  13. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  14. A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732-4735 (1999). [CrossRef]
  15. H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001 (2004). [CrossRef]
  16. T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004). [CrossRef]
  17. S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007). [CrossRef]
  18. S. Müller, “Nonlinear optics involving Rydberg states in a rubidium vapor cell,” Diploma Thesis (2008), Universität Stuttgart, unpublished.
  19. R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009). [CrossRef]
  20. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295-3298 (1998). [CrossRef]
  21. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905-1907 (2002). [CrossRef]
  22. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B: Lasers Opt. 75, 613-619 (2002). [CrossRef]
  23. M. Maric and A. Luiten, “Power-insensitive side locking for laser frequency stabilization,” Opt. Lett. 30, 1153-1155 (2005). [CrossRef] [PubMed]
  24. J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576-584 (1995). [CrossRef] [PubMed]
  25. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited