OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1321–1329

Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry

Iwao Teraoka and Stephen Arnold  »View Author Affiliations

JOSA B, Vol. 26, Issue 7, pp. 1321-1329 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theory is presented that considers the resonance shift of degenerate whispering-gallery modes (WGMs) in sensor applications. The theory is then applied to a pair of counterpropagating waves in a spheroidal resonator. Adsorption of a particle lifts the twofold degeneracy, resulting in a pair of standing waves with a symmetric field around the particle, a standing symmetric wave (SSW) and an antisymmetric wave (ASW). The shift for a SSW is twice as large as the one for a nondegenerate WGM when the particle radius is sufficiently smaller than the wavelength, whereas the shift for an ASW is nearly zero. The ratio of the split to the mean shift gives an estimate of the particle size, whereas the mean shift is sensitive to its polarizability. With an increasing particle radius, the ratio of the split to the mean shift decreases. There is a particle radius that maximizes the split.

© 2009 Optical Society of America

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(260.2110) Physical optics : Electromagnetic optics
(300.6490) Spectroscopy : Spectroscopy, surface

ToC Category:
Physical Optics

Original Manuscript: January 9, 2009
Manuscript Accepted: February 10, 2009
Published: June 12, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Iwao Teraoka and Stephen Arnold, "Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry," J. Opt. Soc. Am. B 26, 1321-1329 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27, 512-514 (2002). [CrossRef]
  2. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4049 (2002). [CrossRef]
  3. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA detection by optical resonances in microspheres,” Biophys. J. 85, 1974-1979 (2003). [CrossRef] [PubMed]
  4. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  5. M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on silica microsphere surface using TE/TM whispering gallery modes,” Biophys. J. 92, 4466-4472 (2007). [CrossRef] [PubMed]
  6. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem. 79, 930-937 (2007). [CrossRef] [PubMed]
  7. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007). [CrossRef] [PubMed]
  8. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272-274 (2003). [CrossRef] [PubMed]
  9. K. R. Hiremath and V. N. Astratov, “Perturbations of whispering gallery modes by nanoparticles embedded in microcavities,” Opt. Express 16, 5421-5426 (2008). [CrossRef] [PubMed]
  10. S.-W. Ng, P.-T. Leung, and K.-M. Lee, “Dyadic formulation of morphology-dependent resonances. III. Degenerate perturbation theory,” J. Opt. Soc. Am. B 19, 154-164 (2002). [CrossRef]
  11. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835-1837 (1995). [CrossRef] [PubMed]
  12. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669-1671 (2002). [CrossRef]
  13. M. Mohageg, A. Savchenkov, and L. Maleki, “Coherent backscattering in lithium niobate whispering-gallery-mode resonators,” Opt. Lett. 32, 2574-2576 (2007). [CrossRef] [PubMed]
  14. I. Teraoka and S. Arnold, “Theory on resonance shifts in TE and TM whispering-gallery modes by non-radial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381-1389 (2006). [CrossRef]
  15. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343-352 (1993). [CrossRef]
  16. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937-1946 (2003). [CrossRef]
  17. I. Teraoka and S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007). [CrossRef]
  18. I. Teraoka and S. Arnold, “Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer,” J. Opt. Soc. Am. B 23, 1434-1441 (2006). [CrossRef]
  19. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  20. O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka and S. Arnold, “Enhancing sensitivity of a whispering gallery mode bio-sensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited