OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1379–1383

All-optical magnetic superresolution with binary pupil filters

Yaoju Zhang, Yoichi Okuno, and Xun Xu  »View Author Affiliations


JOSA B, Vol. 26, Issue 7, pp. 1379-1383 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001379


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method to produce magnetic superresolution in all-optical magnetic storage is proposed. Two-zone amplitude-only and phase-only filters are designed to improve the quality of the superresolved magnetization pattern, to increase the magnetic spot intensity, to reduce the magnetic spot size, and to control the sidelobe effect. A procedure for designing a rotationally symmetric pupil-plane mask to control the magnetization intensity distribution near focus is presented. As a practical implementation, we have applied our method to obtain superresolving two-zone phase filters that can improve the all-optical magnetic recording density.

© 2009 Optical Society of America

OCIS Codes
(210.3810) Optical data storage : Magneto-optic systems
(320.7160) Ultrafast optics : Ultrafast technology
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Optical Data Storage

History
Original Manuscript: February 18, 2009
Manuscript Accepted: April 2, 2009
Published: June 16, 2009

Citation
Yaoju Zhang, Yoichi Okuno, and Xun Xu, "All-optical magnetic superresolution with binary pupil filters," J. Opt. Soc. Am. B 26, 1379-1383 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-7-1379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637-1646 (1997). [CrossRef]
  2. J. Grochmalicki and R. Pike, “Superresolution for digital versatile discs (DVD's),” Appl. Opt. 39, 6341-6349 (2000). [CrossRef]
  3. Y. Zhang, H. Xiao, and C. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75 (2004). [CrossRef]
  4. Y. Zhang, “A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems,” J. Mod. Opt. 53, 1919-1925 (2006). [CrossRef]
  5. Y. Zhang and X. Ye, “Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens,” Appl. Phys. B 86, 97-103 (2007). [CrossRef]
  6. S. Zhou and C. Zhou, “Discrete continuous-phase superresolving filters,” Opt. Lett. 29, 2746-2748 (2004). [CrossRef] [PubMed]
  7. J. M. Rivas-Moscoso, C. R. Fernández-Pousa, and C. Gómez-Reino, “Hybrid refractive-diffractive-gradient-index superresolving focusing device,” Appl. Opt. 47, E68-E75 (2008). [CrossRef] [PubMed]
  8. J. Wei and M. Xiao, “Laser tunable Toraldo superresolution with a uniform nonlinear pupil filter,” Appl. Opt. 47, 3689-3693 (2008). [CrossRef] [PubMed]
  9. J. Jia, C. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228, 271-278 (2003). [CrossRef]
  10. J. Jia, C. Zhou, X. Sun, and L. Liu, “Superresolution laser beam shaping,” Appl. Opt. 43, 2112-2117 (2004). [CrossRef] [PubMed]
  11. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005). [CrossRef] [PubMed]
  12. F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005). [CrossRef] [PubMed]
  13. C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006). [CrossRef]
  14. C. A. Perroni and A. Liebsch, “Coherent control of magnetization via inverse Faraday Effect,” J. Phys.: Condens. Matter 18, 7063-7078 (2006). [CrossRef]
  15. C. A. Perroni and A. Liebsch, “Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect,” Phys. Rev. B 74, 134430 (2006). [CrossRef]
  16. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007). [CrossRef] [PubMed]
  17. V. V. Kruglyak, M. E. Portnoi, and R. J. Hickenc, “Use of the Faraday optical transformer for ultrafast magnetization reversal of nanomagnets,” J. Nanophotonics 1, 013502 (2007). [CrossRef]
  18. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007). [CrossRef] [PubMed]
  19. A. Rebei and J. Hohlfeld, “The magneto-optical Barnett effect: Circularly polarized light induced femtosecond magnetization reversal,” Phys. Lett. A 372, 1915-1918 (2008). [CrossRef]
  20. M. I. Kurkin, N. B. Bakulina, and R. V. Pisarev, “Transient inverse Faraday effect and ultrafast optical switching of magnetization,” Phys. Rev. B 78, 134430 (2008). [CrossRef]
  21. Y. Zhang and J. Bai, “High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights,” Phys. Lett. A 372, 6294-6297 (2008). [CrossRef]
  22. L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281, 5671-5673 (2008). [CrossRef]
  23. Y. Zhang and J. Bai, “Theoretical study on all-optical magnetic recording using a solid immersion lens,” J. Opt. Soc. Am. B 26, 176-182 (2009). [CrossRef]
  24. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959). [CrossRef]
  25. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190-193 (1965). [CrossRef]
  26. R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303, L1-L4 (2006). [CrossRef]
  27. P. V. Volkov and M. A. Novikov, “Inverse Faraday effect in anisotropic media,” Crystallogr. Rep. 47, 824-828 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited