OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1384–1394

Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit

Aleksandra Foltynowicz, Weiguang Ma, Florian M. Schmidt, and Ove Axner  »View Author Affiliations


JOSA B, Vol. 26, Issue 7, pp. 1384-1394 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001384


View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A thorough analysis of the shape and strength of Doppler-broadened wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals is presented, and their dependence on modulation frequency, modulation amplitude, and detection phase is investigated in detail. The conditions that maximize the on-resonance signal are identified. The analysis is based on standard frequency modulation spectroscopy formalism and the Fourier description of wavelength modulation spectroscopy and is verified by fits to experimental signals from C 2 H 2 and C O 2 measured at 1531 nm . In addition, the line strengths of two C O 2 transitions in the ν 2 3 ν 1 + ν 2 + ν 3 hot band [ P e ( 7 ) and P e ( 9 ) ] were found to differ by 20 % from those given in the HITRAN database.

© 2009 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(300.1030) Spectroscopy : Absorption
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Spectroscopy

History
Original Manuscript: December 22, 2008
Revised Manuscript: March 30, 2009
Manuscript Accepted: May 1, 2009
Published: June 19, 2009

Citation
Aleksandra Foltynowicz, Weiguang Ma, Florian M. Schmidt, and Ove Axner, "Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit," J. Opt. Soc. Am. B 26, 1384-1394 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-7-1384


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000-1002 (1996). [CrossRef] [PubMed]
  2. J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997). [CrossRef]
  3. C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999). [CrossRef]
  4. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004). [CrossRef]
  5. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689-14702 (2008). [CrossRef] [PubMed]
  6. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255-2268 (1999). [CrossRef]
  7. O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008). [CrossRef]
  8. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247-2254 (1999). [CrossRef]
  9. N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004). [CrossRef]
  10. N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83-91 (2004). [CrossRef]
  11. J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006). [CrossRef] [PubMed]
  12. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007). [CrossRef]
  13. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS--Improved detectability,” Opt. Express 15, 10822-10831 (2007). [CrossRef] [PubMed]
  14. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6-15 (1998). [CrossRef]
  15. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B: Lasers Opt. 92, 313-326 (2008). [CrossRef]
  16. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145-152 (1983). [CrossRef]
  17. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277-1354 (2001). [CrossRef]
  18. S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996). [CrossRef]
  19. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008). [CrossRef]
  20. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156-1165 (2008). [CrossRef]
  21. R. L. Kronig, “On the theory of dispersion of X-rays,” J. Opt. Soc. Am. 12, 547-557 (1926). [CrossRef]
  22. H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545-557 (1927).
  23. P. Kluczynski, A. M. Lindberg, and O. Axner, “Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles,” J. Quant. Spectrosc. Radiat. Transf. 83, 345-360 (2004). [CrossRef]
  24. HITRAN 2004 Database (Version 12.0).
  25. R. El Hachtouki and J. Vander Auwera, “Absolute line intensities in acetylene: the 1.5-μm region.,” J. Mol. Spectrosc. 216, 355-362 (2002). [CrossRef]
  26. L. D. Le, J. D. Tate, M. B. Seasholtz, M. Gupta, T. Owano, D. Baer, T. Knittel, A. Cowie, and J. Zhu, “Development of a rapid on-line acetylene sensor for industrial hydrogenation reactor optimization using off-axis integrated cavity output spectroscopy,” Appl. Spectrosc. 62, 59-65 (2008). [CrossRef] [PubMed]
  27. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320-1326 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited