OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1417–1422

Single-mode operation of a large optically pumped triangular laser with lateral air trenches

Danyu Liu, Haroldo T. Hattori, Lan Fu, Hark Hoe Tan, and Chennupati Jagadish  »View Author Affiliations


JOSA B, Vol. 26, Issue 7, pp. 1417-1422 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001417


View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A triangular resonator has fewer modes than other polygonal lasers such as microdisk and square lasers with similar areas. However, a large resonator with a side of 8 μ m can still resonate at many distinct wavelengths. We show experimentally that the introduction of air trenches to the sides of the triangular resonator can lead to single-mode operation of the laser device. The air trenches will considerably increase the radiation losses of most of the resonant modes, except for a mode with weak magnetic fields at the position of the trenches. This high quality factor mode will be the only mode able to reach lasing in the modified structure, as we show experimentally.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.2020) Lasers and laser optics : Diode lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 30, 2009
Revised Manuscript: May 18, 2009
Manuscript Accepted: May 23, 2009
Published: June 24, 2009

Citation
Danyu Liu, Haroldo T. Hattori, Lan Fu, Hark Hoe Tan, and Chennupati Jagadish, "Single-mode operation of a large optically pumped triangular laser with lateral air trenches," J. Opt. Soc. Am. B 26, 1417-1422 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-7-1417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  2. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002). [CrossRef]
  3. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).
  4. H. T. Hattori, H. H. Tan, and C. Jagadish, “Optically pumped in-plane photonic crystal micro-cavity laser arrays coupled to waveguides,” J. Lightwave Technol. 26, 1374-1380 (2008). [CrossRef]
  5. V. S. Amaratunga, H. T. Hattori, M. Premaratne, H. H. Tan, and C. Jagadish, “Photonic crystal phase detector,” J. Opt. Soc. Am. B 25, 1532-1536 (2008). [CrossRef]
  6. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  7. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nature Photon. 2, 161-164 (2008). [CrossRef]
  8. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007). [CrossRef]
  9. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP/InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997). [CrossRef]
  10. M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999). [CrossRef]
  11. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993). [CrossRef]
  12. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006). [CrossRef]
  13. H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006). [CrossRef]
  14. H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt. 47, 2178-2185 (2008). [CrossRef] [PubMed]
  15. S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys., Part 2 36, L76-L78 (1997). [CrossRef]
  16. Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100-107 (2001). [CrossRef]
  17. Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001). [CrossRef]
  18. Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007). [CrossRef]
  19. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004). [CrossRef]
  20. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).
  21. H. T. Hattori, “Modal analysis of one-dimensional nonuniform arrays of square resonators,” J. Opt. Soc. Am. B 25, 1873-1881 (2008). [CrossRef]
  22. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562-1568 (2004). [CrossRef] [PubMed]
  23. I. H. Song, Y. A. Peter, and M. Meunier, “Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications,” J. Micromech. Microeng. 17, 1593-1597 (2007). [CrossRef]
  24. Fullwave 4.0 RSOFT Design Group, 1999, http://www.rsoftdesign.com.
  25. A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007). [CrossRef]
  26. H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069-3076 (2005). [CrossRef] [PubMed]
  27. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B 22, 2581-2595 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited