OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1450–1455

High-temperature metal coating for modification of photonic band edge position

Timothy A. Walsh, James A. Bur, Yong-Sung Kim, Toh-Ming Lu, and Shawn-Yu Lin  »View Author Affiliations

JOSA B, Vol. 26, Issue 7, pp. 1450-1455 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Atomic-layer-deposited iridium is coated onto three-dimensional tungsten woodpile photonic crystals to modify the optical properties of the structure. As the lattice constant of a metallic photonic bandgap structure decreases to the scale of the near-IR wavelengths, the band edge becomes pinned and cannot be pushed to shorter wavelengths because of limitations inherent in the material. With a thin coating of iridium, the band edge of a pinned tungsten lattice is pushed from 1.6 μ m to below 1 μ m . This shift in the reflectance band edge will be accompanied by a reduction in the absorptance of the structure in the 1 2 μ m range.

© 2009 Optical Society of America

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:

Original Manuscript: March 4, 2009
Manuscript Accepted: May 14, 2009
Published: June 26, 2009

Timothy A. Walsh, James A. Bur, Yong-Sung Kim, Toh-Ming Lu, and Shawn-Yu Lin, "High-temperature metal coating for modification of photonic band edge position," J. Opt. Soc. Am. B 26, 1450-1455 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002). [CrossRef] [PubMed]
  2. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003). [CrossRef]
  3. T. A. Walsh and S. Y. Lin, “Power density and efficiency of thermophotovoltaic energy conversion using a photonic-crystal emitter and a 2-D metal-grid filter,” IEEE Trans. Electron Devices 55, 1101-1108 (2008). [CrossRef]
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998). [CrossRef]
  5. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538-1541 (2003). [CrossRef]
  6. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997). [CrossRef]
  7. S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006). [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  9. S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593-595 (2003). [CrossRef]
  10. S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003). [CrossRef] [PubMed]
  11. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ=1.5 μm, by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28, 1683-1685 (2003). [CrossRef] [PubMed]
  12. For a review, see, for example, M. Leskalä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,”Thin Solid Films 409, 138-146 (2002). [CrossRef]
  13. G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005). [CrossRef]
  14. G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006). [CrossRef]
  15. R. L. Puurunen, “Growth per cycle in atomic layer deposition: a theoretical model,” Chem. Vap. Deposition 9, 249-257 (2003). [CrossRef]
  16. R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches,” Chem. Vap. Deposition 9, 73-78 (2003). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  18. Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  19. Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003). [CrossRef]
  20. T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151, G489-G492 (2004). [CrossRef]
  21. R. A. Waldo, M. C. Militello, and S. W. Gaarenstroom, “Quantitative thin-film analysis with an energy-dispersive x-ray detector,” Surf. Interface Anal. 20, 111-114 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited