OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1558–1568

Optical and thermal finite-difference time-domain model for passively mode-locked surface-emitting lasers

Mayank Bahl, Nicolae C. Panoiu, and Richard M. Osgood, Jr.  »View Author Affiliations

JOSA B, Vol. 26, Issue 8, pp. 1558-1568 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dynamics of ultrashort pulses generated by a monolithic passively mode-locked vertical cavity surface-emitting laser containing a multiple quantum well gain region and a single quantum well saturable absorber are studied. We introduce a self-consistent computational model based on the finite-difference time-domain method, which describes the complete dynamics of surface-emitting lasers. The model consists of a set of coupled equations that accounts for the interrelations among the electromagnetic field, material polarization, carrier density, and lattice and plasma temperatures. The material response is incorporated via the effective semiconductor Bloch equations. The thermal effects are included through two coupled equations that relate the lattice and plasma temperatures to the carrier-phonon scattering effects. A comparison of the results obtained with and without the inclusion of thermal effects clearly demonstrates the effects of plasma heating. Finally, we also investigate the interplay between various relaxation rates, namely, the carrier-phonon scattering rate and the rate of heat loss to the ambient heat sink, and their relative influence on the system dynamics.

© 2009 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 10, 2009
Revised Manuscript: May 17, 2009
Manuscript Accepted: June 4, 2009
Published: July 15, 2009

Mayank Bahl, Nicolae C. Panoiu, and Richard M. Osgood, Jr., "Optical and thermal finite-difference time-domain model for passively mode-locked surface-emitting lasers," J. Opt. Soc. Am. B 26, 1558-1568 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72, 1814-1816 (1998). [CrossRef]
  2. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 607-616 (1996). [CrossRef]
  3. H. L. Rao, M. J. Steel, R. Scarmozzino, and R. M. Osgood, “VCSEL design using the bidirectional beam-propagation method,” IEEE J. Quantum Electron. 37, 1435-1440 (2001). [CrossRef]
  4. S. Riyopoulos, D. Dialetis, J. Inman, and A. Phillips, “Active-cavity vertical-cavity surface-emitting laser eigenmodes with simple analytic representation,” J. Opt. Soc. Am. B 18, 1268-1284 (2001). [CrossRef]
  5. M. Bahl, H. Rao, N.-C. Panoiu, and R. M. Osgood, Jr., “Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm,” Opt. Lett. 29, 1689-1691 (2004). [CrossRef] [PubMed]
  6. M. Bahl, N.-C. Panoiu, and R. M. Osgood, Jr., “Modeling ultrashort field dynamics in surface emitting lasers by using finite-difference time-domain method,” IEEE J. Quantum Electron. 41, 1244-1252 (2005). [CrossRef]
  7. J. Mulet and S. Balle, “Mode-locking dynamics in electrically driven vertical-external-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 1148-1156 (2005). [CrossRef]
  8. W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals,” J. Lightwave Technol. 25, 2306-2314 (2007). [CrossRef]
  9. Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, “Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime,” Electron. Lett. 3, 885-887 (2004).
  10. K. Jasim, Q. Zhang, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, “Passively modelocked vertical extended cavity surface emitting diode laser,” Electron. Lett. 39, 373-375 (2003). [CrossRef]
  11. I.N.Duling, ed., Compact Sources of Ultrashort Pulses (Cambridge U. Press, 1995). [CrossRef]
  12. A. J. Lowery, “New dynamic semiconductor laser model based on the transmission line modeling method,” IEE Proc.-J: Optoelectron. 134, 281-289 (1987). [CrossRef]
  13. W. B. Jiang, D. Derickson, R. Mirin, and J. E. Bowers, “Analysis of laser pulse chirping in mode-locked vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29, 1309-1318 (1993). [CrossRef]
  14. W. Yang and A. Gopinath, “Study of passive mode locking of semiconductor lasers using time-domain modeling,” IEEE J. Quantum Electron. 63, 2717-2719 (1993).
  15. L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389-1395 (1994). [CrossRef]
  16. D. Jones, L. Zhang, and D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31, 1051-1058 (1995). [CrossRef]
  17. B. Kim, Y. Chung, and S. Kim, “Dynamic analysis of mode-locked sampled-grating distributed Bragg reflector laser diodes,” IEEE J. Quantum Electron. 35, 1623-1629 (1999). [CrossRef]
  18. J. Park and Y. Kawakami, “Time-domain models for the performance simulation of semiconductor optical amplifiers,” Opt. Express 14, 2956-2968 (2006). [CrossRef] [PubMed]
  19. T. L. Koch, L. C. Chiu, C. Harder, and A. Yariv, “Picosecond carrier dynamics and laser action in optically pumped buried hetrostructure lasers,” Appl. Phys. Lett. 41, 6-8 (1982). [CrossRef]
  20. M. P. Kesler and E. P. Ippen, “Subpicosecond gain dynamics in GaAlAs laser diodes,” Appl. Phys. Lett. 51, 1765-1767 (1987). [CrossRef]
  21. C. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543-1550 (1997). [CrossRef]
  22. T. V. Sarkisyan, A. N. Oraevsky, A. T. Rosenberger, R. L. Rolleigh, and D. K. Bandy, “Nonlinear gain and carrier temperature dynamics in semiconductor laser media,” J. Opt. Soc. Am. B 15, 1107-1119 (1998). [CrossRef]
  23. J. W. Scott, S. W. Corrzine, D. B. Young, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295-1308 (1993). [CrossRef]
  24. J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 6, 139-142 (1994).
  25. B. Lu, P. Zhou, J. Cheng, and K. J. Malloy, “High temperature pulsed and CW operation and thermally stable threshold characteristics of vertical-cavity surface-emitting semiconductor lasers grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 65, 1337-1339 (1994). [CrossRef]
  26. C. Ning, R. A. Indik, and J. V. Moloney, “Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 12, 1993-2004 (1995). [CrossRef]
  27. T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279-3292 (1998). [CrossRef]
  28. W. Nakwaski and M. Osinski, “Thermal properties of vertical-cavity surface-emitting semiconductor lasers,” Prog. Opt. 38, 165-262 (1998). [CrossRef]
  29. K. Bohringer and O. Hess, “A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation,” Prog. Quantum Electron. 32, 159-246 (2008). [CrossRef]
  30. K. Bohringer and O. Hess, “A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics,” Prog. Quantum Electron. 32, 247-307 (2008). [CrossRef]
  31. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals (Springer, 1999), p. 204.
  32. K. Hasebe, Y. Onishi, and F. Koyama, “All-optical regenerator with re-polarization function based on dual optical injection VCSEL,” IEICE Electron. Express 2, 338-343 (2005). [CrossRef]
  33. M. Bahl, “Electromagnetic simulations of active and nonlinear photonic devices,” Ph.D. dissertation (Columbia University, 2005).
  34. M. Bahl, N.-C. Panoiu, and R. M. Osgood, Jr., in Proceedings of the IEEE Conference on Lightwave Technologies in Instrumentation and Measurement (IEEE, 2004), pp. 17-22. [CrossRef]
  35. W. H. Press, S. A. Teukoisky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited