OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1569–1577

Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas  »View Author Affiliations


JOSA B, Vol. 26, Issue 8, pp. 1569-1577 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001569


View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical study of the spontaneous emission of an optical emitter close to a metal nanostructure of arbitrary shape. The modification of the corresponding radiative and nonradiative decay rates and resulting quantum efficiencies, expressed on the basis of a semiclassical dipole model in terms of the local plasmonic mode density, is calculated by means of the rigorous formulation of the Green’s theorem surface integral equations. Metal losses and the intrinsic nonradiative decay rate of the molecules are properly considered, presenting relationships valid in general for arbitrary intrinsic quantum yields. Resonant enhancement of the radiative and nonradiative decay rates of a fluorescent molecule is observed when coupled to an optical dimer nanoantenna. Upon varying the dipole position, it is possible to obtain a predominant enhancement of radiative decay rates over the nonradiative counterpart, resulting in an increase of the internal quantum efficiency. For emitters positioned in the gap, quantum efficiency enhancements from an intrinsic value of 1% to 75 % are possible.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(290.5850) Scattering : Scattering, particles
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 8, 2009
Revised Manuscript: May 22, 2009
Manuscript Accepted: May 23, 2009
Published: July 15, 2009

Citation
Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas, "Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence," J. Opt. Soc. Am. B 26, 1569-1577 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-8-1569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946). [CrossRef]
  2. H. Kuhn, “Classical aspects of energy transfer in molecular system,” J. Chem. Phys. 53, 101-108 (1969). [CrossRef]
  3. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1-65 (1978). [CrossRef]
  4. M. S. Yeung and T. K. Gustafson, “Spontaneous emission near an absorbing dielectric surface,” Phys. Rev. A 54, 5227-5242 (1996). [CrossRef] [PubMed]
  5. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  6. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806-3808 (1996). [CrossRef]
  7. C. Hankel and V. Sandoghdar, “Single-molecule spectroscopy near structured dielectrics,” Opt. Commun. 158, 250-262 (1998). [CrossRef]
  8. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002). [CrossRef] [PubMed]
  9. L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004). [CrossRef]
  10. M. Thomas, J.-J. Greffet, and R. Carminati, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863-3865 (2004). [CrossRef]
  11. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006). [CrossRef]
  12. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007). [CrossRef]
  13. G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. J. F. Martin, “Molecular quenching and relaxation in a plasmonic tunable system,” Phys. Rev. B 77, 121101 (2008). [CrossRef]
  14. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecular fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  15. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  16. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong modifications of the spontaneous emission of light sources by single plasmonic nanoantennas,” Nano Lett. 7, 2871-2875 (2007). [CrossRef] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003). [CrossRef]
  18. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  19. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53-62 (2007). [CrossRef] [PubMed]
  20. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  21. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  22. J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561-1563 (2005). [CrossRef] [PubMed]
  23. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28-33 (2007). [CrossRef] [PubMed]
  24. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623-1625 (2007). [CrossRef] [PubMed]
  25. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266-14274 (2007). [CrossRef] [PubMed]
  26. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nanoantennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008). [CrossRef]
  27. A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10, 105015 (2008). [CrossRef]
  28. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748-1755 (2008). [CrossRef]
  29. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmons polaritons,” Opt. Express 15, 12131-12144 (2007). [CrossRef] [PubMed]
  30. V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires with arbitrary cross section by means of Green's theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822-2830 (2007). [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  32. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744-2748 (1974). [CrossRef]
  33. V. Giannini and J. A. Sánchez-Gil, “Excitation and emission enhancement of single molecule fluorescence through multiple surface plasmon resonances on metal trimer nanoantennas,” Opt. Lett. 33, 899-901 (2008). [CrossRef] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  35. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005). [CrossRef]
  36. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736-17746 (2007). [CrossRef] [PubMed]
  37. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005). [CrossRef] [PubMed]
  38. T. H. Taminau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234-237 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited