OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1599–1602

Preparation of a class of multiatom entangled states

Yan Xia, Jie Song, Ai-Dong Zhu, Zhe Jin, Shou Zhang, and He-Shan Song  »View Author Affiliations


JOSA B, Vol. 26, Issue 8, pp. 1599-1602 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001599


View Full Text Article

Enhanced HTML    Acrobat PDF (116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a protocol to generate a class of entangled states of N Λ-type three-level atoms trapped in distant cavities by using interference of polarized photons. The proposed setup involves simple linear optical elements, cavities, and the conventional photon detectors that only distinguish the vacuum and the nonvacuum Fock number states.

© 2009 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: January 9, 2009
Revised Manuscript: April 21, 2009
Manuscript Accepted: May 1, 2009
Published: July 20, 2009

Citation
Yan Xia, Jie Song, Ai-Dong Zhu, Zhe Jin, Shou Zhang, and He-Shan Song, "Preparation of a class of multiatom entangled states," J. Opt. Soc. Am. B 26, 1599-1602 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-8-1599


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, Ser. A 439, 553-558 (1992). [CrossRef]
  2. W. Dur, G. Bidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
  3. D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, M.Kafatos, ed. (Kluwer, 1989).
  4. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bells theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990). [CrossRef]
  5. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004). [CrossRef] [PubMed]
  6. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  7. A. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  8. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-149 (2002). [CrossRef]
  9. N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett. 79, 2153-2156 (1997). [CrossRef]
  10. C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025-1033 (1999). [CrossRef]
  11. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158-5161 (1999). [CrossRef]
  12. X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003). [CrossRef] [PubMed]
  13. L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003). [CrossRef] [PubMed]
  14. X. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A 68, 024302 (2003). [CrossRef]
  15. S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310(R) (2005). [CrossRef]
  16. Y. L. Lim, A. Beige, and L. C. Kwek, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. Lett. 95, 030505 (2005). [CrossRef] [PubMed]
  17. S. J. Devitt, A. D. Greentree, R. Lonicioiu, J. L. O'Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: an on-demand resource for photonic entanglement,” Phys. Rev. A 76, 052312 (2007). [CrossRef]
  18. X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, and K. Peng, “Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef] [PubMed]
  19. C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007). [CrossRef]
  20. C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007). [CrossRef]
  21. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
  22. T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational determination of multiqubit entanglement classes via tuning of local operations,” Phys. Rev. Lett. 102, 053601 (2009). [CrossRef] [PubMed]
  23. Y. Xia, J. Song, H. S. Song, and S. Zhang, “Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors,” J. Opt. Soc. Am. B 26, 129-132 (2009). [CrossRef]
  24. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910-913 (2001). [CrossRef] [PubMed]
  25. W. Dur and H. J. Briegel, “Stability of macroscopic entanglement under decoherence,” Phys. Rev. Lett. 92, 180403 (2004). [CrossRef] [PubMed]
  26. V. Scarani, A. Acin, E. Schenck, and M. Aspelmeyer, “Nonlocality of cluster states of qubits,” Phys. Rev. A 71, 042325 (2005). [CrossRef]
  27. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188 (2001). [CrossRef] [PubMed]
  28. T. Tanamoto, Y. X. Liu, X. D. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Phys. Rev. Lett. 102, 100501 (2009). [CrossRef] [PubMed]
  29. M. Rosenkranz and D. Jaksch, “Parameter estimation with cluster states,” Phys. Rev. A 79, 022103 (2009). [CrossRef]
  30. X. B. Zou and W. Mathis, “Schemes for generating the cluster states in microwave cavity QED,” Phys. Rev. A 72, 013809 (2005). [CrossRef]
  31. S. B. Zheng, “Generation of cluster states in ion-trap systems,” Phys. Rev. A 73, 065802 (2006). [CrossRef]
  32. Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007). [CrossRef]
  33. L. Jiang, A. M. Rey, O. Romero-Isart, J. J. García-Ripoll, A. Sanpera, and M. D. Lukin, “Preparation of decoherence-free cluster states with optical superlattices,” Phys. Rev. A 79, 022309 (2009). [CrossRef]
  34. W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61, 063817 (2000). [CrossRef]
  35. X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007). [CrossRef]
  36. X. B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448, 1 (2007). [CrossRef]
  37. X. B. Wang, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  38. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000). [CrossRef] [PubMed]
  39. S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007). [CrossRef] [PubMed]
  40. A. Imamoglu, “High efficiency photon counting using stored light,” Phys. Rev. Lett. 89, 163602 (2002). [CrossRef] [PubMed]
  41. D. F. V. James and P. G. Kwiat, “Atomic-vapor-based high efficiency optical detectors with photon number resolution,” Phys. Rev. Lett. 89, 183601 (2002). [CrossRef] [PubMed]
  42. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited