OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 8 — Aug. 1, 2009
  • pp: 1621–1626

Characteristics of parasitic eigenmodes in high-average-power disk lasers

Xiao-Jun Wang and Xiao-Jian Shu  »View Author Affiliations

JOSA B, Vol. 26, Issue 8, pp. 1621-1626 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The parasitic oscillations in a disk gain medium are refined by a rigorous electrodynamics study. The boundary conditions of an electromagnetic field decide not only the spatial distribution of the field (transverse eigenmodes) but also the spectrum of the field (longitudinal eigenmodes) due to the higher geometric symmetry of the disk. The novel dispersion relations only allow a few longitudinal eigenmodes. Because stable parasitic modes possess a larger spatial volume, in quasi-cw operating high-average-power solid-state lasers the longitudinal eigenmodes play a more important role than transverse ones in mode competition with the main laser. Furthermore, the polarizations are also selected by the boundary conditions, and a given eigenmode cannot possess radial polarization and azimuthal polarization components simultaneously.

© 2009 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3580) Lasers and laser optics : Lasers, solid-state
(260.5430) Physical optics : Polarization

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 19, 2009
Revised Manuscript: May 28, 2009
Manuscript Accepted: June 17, 2009
Published: July 22, 2009

Xiao-Jun Wang and Xiao-Jian Shu, "Characteristics of parasitic eigenmodes in high-average-power disk lasers," J. Opt. Soc. Am. B 26, 1621-1626 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. N. Dieke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99-110 (1954). [CrossRef]
  2. J. E. Swain, R. E. Kidder, K. Pettipiece, F. Rainer, E. D. Baird, and B. Loth, “Large-aperture glass disk laser system,” J. Appl. Phys. 40, 3973-3977 (1969). [CrossRef]
  3. J. M. McMahon, J. Emmett, J. Holzrichter, and J. B. Trenholme, “A glass-disk-laser amplifier,” IEEE J. Quantum Electron. 9, 992-999 (1973). [CrossRef]
  4. J. B. Trenholme, “Flurescence amplification and parastic oscillation limitations in disc lasers,” Naval Research Labs, Memo. Rept. 2480 (1972).
  5. J. M. Soures, L. M. Goldman, and M. J. Lubin, “Spatial distribution of inversion in face pumped Nd:glass laser slabs,” Appl. Opt. 12, 927-928 (1973). [CrossRef] [PubMed]
  6. D. C. Brown, “Parasitic oscillations in large aperture Nd3+: glass amplifiers revisited,” Appl. Opt. 12, 2215-2217 (1973). [CrossRef]
  7. D. C. Brown, S. D. Jacobs, and N. Nee, “Parasitic oscillations, absorption, stored energy density, and heat density in active-mirror and disk amplifiers,” Appl. Opt. 17, 211-224 (1978). [CrossRef] [PubMed]
  8. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission-application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35, 101-110 (1999). [CrossRef]
  9. Z. G. Li, Z. J. Xiong, and N. Moors, “Amplified spontaneous emission effects in a passively Q-switched diode-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 21, 1479-1485 (2004). [CrossRef]
  10. J. Speiser, “Scaling of thin-disk lasers-influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26, 26-35 (2009). [CrossRef]
  11. M. D. Rotter, C. B. Dane, S. A. Gonzales, R. D. Merrill, S. C. Mitchell, C. W. Parks, and R. M. Yamamoto, “The solid-state heat-capacity laser,” in Advanced Solid-State Photonics (TOPS), G.Quarles, ed. Vol. 94 of 2004 OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 278.
  12. J. Vetrovec, R. Shah, T. Endo, and A. Koumavakalis, “Development of solid-state disk laser for high-average power,” Proc. SPIE 4968, 54-64 (2003). [CrossRef]
  13. J. Durnin, J. J. Miceli Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]
  14. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455-1461 (1999). [CrossRef]
  15. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  16. J. A. Buck, Fundamentals of Optical Fibers (Wiley, 1995).
  17. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  18. X. Wu and H. Cao, “Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77, 013832 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited