OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1679–1687

Optimization of femtosecond laser micromachining in hydrogel polymers

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. 1679-1687 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-repetition-rate low-pulse-energy near-infrared femtosecond laser pulses from a Ti:sapphire oscillator were used to micromachine localized refractive index structures inside ophthalmologic hydrogel polymers. The relation between laser-induced refractive index modification and different laser micromachining conditions was investigated in both pure and dye copolymerized hydrogel polymers. We studied the nonlinear absorption enhancement of the laser energy induced by copolymerized dyes during the micromachining process and the effects on increasing the laser scanning speed. We discussed the wavelength dependence and the laser pulse energy dependence of the micromachining results in a laser operation wavelength range from 700 nm to 1000 nm . By changing the water concentration in pure and doped hydrogel polymers, we further investigated the critical role that water plays in the creation of large refractive index modifications in hydrogels without inducing optical breakdown or damage. A thermal model was used to explain the experimental results. By increasing nonlinear absorption in hydrogel polymers and optimizing femtosecond laser operation parameters, large refractive index modifications could be achieved with greatly increased laser micromachining speeds. In this paper, we discuss the optimization of material and laser parameters for the hydrogel material system.

© 2009 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.5470) Materials : Polymers
(190.4180) Nonlinear optics : Multiphoton processes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Laser Materials Processing

Original Manuscript: April 15, 2009
Revised Manuscript: July 1, 2009
Manuscript Accepted: July 14, 2009
Published: August 10, 2009

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox, "Optimization of femtosecond laser micromachining in hydrogel polymers," J. Opt. Soc. Am. B 26, 1679-1687 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996). [CrossRef] [PubMed]
  2. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001). [CrossRef]
  3. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999). [CrossRef]
  4. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001). [CrossRef]
  5. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612-620 (2005). [CrossRef] [PubMed]
  6. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004). [CrossRef] [PubMed]
  7. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291-297 (2006). [CrossRef] [PubMed]
  8. X. P. Li, J. W. M. Chon, S. H. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32, 277-279 (2007). [CrossRef] [PubMed]
  9. L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14, 11901-11909 (2006). [CrossRef] [PubMed]
  10. L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100-3108 (2008). [CrossRef] [PubMed]
  11. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12, 4019-4024 (2004). [CrossRef] [PubMed]
  12. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002). [CrossRef]
  13. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352-354 (2005). [CrossRef] [PubMed]
  14. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824-1826 (2002). [CrossRef]
  15. P. Yao, G. J. Schneider, D. W. Prather, E. D. Wetzel, and D. J. O'Brien, “Fabrication of three-dimensional photonic crystals with multilayer photolithography,” Opt. Express 13, 2370-2376 (2005). [CrossRef] [PubMed]
  16. N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Atmos. Res. 18, 457-460 (2006).
  17. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15, 3426-3436 (2007). [CrossRef] [PubMed]
  18. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51-54 (1999). [CrossRef]
  19. J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359-361 (2002). [CrossRef]
  20. S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci., Part B: Polym. Phys. 40, 2800-2806 (2002). [CrossRef]
  21. Y. P. Meshalkin, V. A. Svetlichnyi, A. V. Reznichenko, A. Y. Myachin, S. S. Bakhareva, S. M. Dolotov, T. N. Kopylova, and E. P. Ponomarenko, “Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser,” Quantum Electron. 33, 803-806 (2003). [CrossRef]
  22. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008). [CrossRef] [PubMed]
  23. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B 26, 595-602 (2009). [CrossRef]
  24. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16, 21914-21921 (2008). [CrossRef] [PubMed]
  25. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76, 351-354 (2003). [CrossRef]
  26. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005). [CrossRef] [PubMed]
  27. K. Kamada, K. Matsunaga, A. Yoshino, and K. Ohta, “Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation,” J. Opt. Soc. Am. B 20, 529-537 (2003). [CrossRef]
  28. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers Opt. 81, 1015-1047 (2005). [CrossRef]
  29. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002). [PubMed]
  30. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B: Lasers Opt. 68, 271-280 (1999). [CrossRef]
  31. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008). [CrossRef] [PubMed]
  32. S. Grill and E. H. K. Stelzer, “Method to calculate lateral and axial gain factors of optical setups with a large solid angle,” J. Opt. Soc. Am. A 16, 2658-2665 (1999). [CrossRef]
  33. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690to1050 nm,” J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]
  34. C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade, and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004). [CrossRef]
  35. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16, 4029-4047 (2008). [CrossRef] [PubMed]
  36. J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using cross-linkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited