OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1702–1709

Comprehensive formulation of temperature-dependent dispersion of optical materials: illustration with case of temperature tuning of a mid-IR Hg Ga 2 S 4 OPO

Jacques Mangin, Gabriel Mennerat, Grégory Gadret, Valery Badikov, and Jean-Claude de Miscault  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. 1702-1709 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (678 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The temperature dependence of refractive indices of optical materials is characterized in this work by what we call their normalized thermo-optic coefficients. These are determined experimentally through interferometric measurements of thermal expansion and of changes in optical thickness at a few laser wavelengths as function of temperature. A suitable vectorial formalism applied to these data allows predicting the thermal evolution of the refractive index all over the useful range of transparency. The validity and reliability of our methodology is demonstrated through temperature tuning of a mid-IR Hg Ga 2 S 4 optical parametric oscillator (OPO) pumped at 1.0642 μ m by a Nd:YAG laser. Measured thermal variation of both signal and idler wavelengths agrees very well with the predicted one.

© 2009 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(260.2030) Physical optics : Dispersion

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 18, 2009
Manuscript Accepted: July 6, 2009
Published: August 14, 2009

Jacques Mangin, Gabriel Mennerat, Grégory Gadret, Valery Badikov, and Jean-Claude de Miscault, "Comprehensive formulation of temperature-dependent dispersion of optical materials: illustration with case of temperature tuning of a mid-IR HgGa2S4 OPO," J. Opt. Soc. Am. B 26, 1702-1709 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Vannoni and G. Molesini, “Ray tracing approach to refractive index measurement of prism samples in a vacuum cell,” Proc. SPIE 7102, 71020V1-71020V7 (2008).
  2. D. B. Leviton and B. J. Frey, “Cryogenic high accuracy refraction measuring system--(CHARMS): a new facility for cryogenic infrared through far ultra-violet refractive index measurements,” Proc. SPIE 5494, 492-504 (2004). [CrossRef]
  3. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, J. Henningsen, A. Yelisseiev, L. Lobanov, O. Balachninaite, G. Slekys, and V. Siruptaikis, “Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981-2007 (2004).
  4. J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826-834 (1993). [CrossRef]
  5. J. Mangin, S. Fossier, P. Strimer, and G. Gadret, “Simultaneous determination of thermo- and electro-optic coefficients by Fabry-Pérot thermal scanning interferometry,” Proc. SPIE 5252, 423-430 (2004). [CrossRef]
  6. J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W1-71020W9 (2008).
  7. M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
  8. W. J. Tropf, M. E. Thomas, and T. J. Harris, in Handbook of Optics, Vol. 2, Ch. 33 (McGraw-Hill, 1995).
  9. J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients; application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002-1006 (2005). [CrossRef]
  10. V. V. Badikov, I. N. Matveev, V. L. Panyutin, S. M. Pshenichnikov, T. M. Repyakhova, O. V. Rychik, A. E. Rozenson, N. K. Trotsenko, and N. D. Ustinov, “Growth and optical properties of mercury thiogallate,” Sov. J. Quantum Electron. 9, 1068-1069 (1979). [CrossRef]
  11. S. Das, U. Chatterjee, C. Ghosh, and S. Gangopadhyay, “A comparative study of second harmonic generation of pulsed CO2 laser radiation in some infrared crystals,” Infrared Phys. Technol. 51, 9-12 (2007). [CrossRef]
  12. S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 259, 868-872 (2006). [CrossRef]
  13. S. A. Andrev, N. P. Andreeva, V. V. Badikov, I. N. Matveev, and S. M. Pshenichnikov, “Frequency up-conversion in a mercury thiogallate crystal,” Sov. J. Quantum Electron. 10, 1157-1158 (1980). [CrossRef]
  14. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtoscond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177-183 (2000). [CrossRef]
  15. V. Petrov, F. Rotermund, and F. Noack, “Generation of high power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3, R1-R19 (2001). [CrossRef]
  16. E. Takaoka and K. Kato, “Tunable generation in HgGa2S4,” in Conference on Lasers and Electro-Optics (CLEO'98), Technical Digest (IEEE, 1998), p. 253.
  17. F. Rotermund and V. Petrov, “Mercury thiogallate mid-infrared femtosecond optical parametric generator pumped at 1.25 μm by a Cr:forsterite regenerative amplifier,” Opt. Lett. 25, 746-748 (2000). [CrossRef]
  18. V. V. Badikov, A. K. Don, K. V. Mitin, A. M. Seregin, V. V. Sinaiskii, N. I. Shchebetova, and T. A. Shchetinkina, “Optical parametric mid-IR HgGa2S4 oscillator pumped by a repetitively pulsed Nd:YAG laser,” Quantum Electron. 37, 363-365 (2007). [CrossRef]
  19. A. Hadni, Essentials of Modern Physics Applied to the Study of the Infrared (Pergamon Press, 1967).
  20. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Chem. Phys. 5, 329-530 (1976).
  21. V. V. Ursaki, P. C. Ricci, I. M. Tiginyanu, A. Anedda, N. N. Syrbu, and V. E. Tezlevan, “Excitation and temperature tuned photoluminescence in HgGa2S4 single crystals,” J. Phys. Chem. Solids 63, 1823-1828 (2002). [CrossRef]
  22. M. Kurz, A. Pusztai, and G. Müller, “Development of a new powerful computer code CrysVUn especially designed for fast simulation of bulk crystal growth processes,” J. Cryst. Growth 198/199, 101-106 (1999). [CrossRef]
  23. V. V. Badikov, N. V. Kuzmin, V. B. Laptev, A. L. Malinovsky, K. V. Mitin, G. S. Nazarov, E. A. Ryabov, A. M. Seryoginand, and N. I. Shchebetova, “A study of the optical and thermal properties of nonlinear mercury thiogallate,” Quantum Electron. 34, 451-456 (2004). [CrossRef]
  24. S. Das, U. Chatterjee, C. Ghosh, S. Gangopadhyay, Yu. M. Andreev, G. Lanskii, and V. V. Badikov, “Corrigendum to tunable middle infrared radiation with HgGa2S4 crystal,” Opt. Commun. 263, 352 (2006). [CrossRef]
  25. S. Emanueli and A. Arie, “Temperature dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661-6665 (2003). [CrossRef] [PubMed]
  26. K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (CLEO/QELS'2008), OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA11. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited