OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1795–1800

Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

Jesper Lægsgaard and Peter John Roberts  »View Author Affiliations


JOSA B, Vol. 26, Issue 9, pp. 1795-1800 (2009)
http://dx.doi.org/10.1364/JOSAB.26.001795


View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse at high powers. This allows a scaling of the output pulse energy toward the microjoule level.

© 2009 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 11, 2009
Revised Manuscript: July 27, 2009
Manuscript Accepted: July 29, 2009
Published: August 28, 2009

Citation
Jesper Lægsgaard and Peter John Roberts, "Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers," J. Opt. Soc. Am. B 26, 1795-1800 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-9-1795


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. S. De Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832-2837 (2003). [CrossRef] [PubMed]
  2. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332-3337 (2003). [CrossRef] [PubMed]
  3. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs 5.3 nJ fiber-laser system at 1 μm using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14, 6063-6068 (2006). [CrossRef] [PubMed]
  4. C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13, 3236-3241 (2005). [CrossRef] [PubMed]
  5. J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16, 9628-9644 (2008). [CrossRef] [PubMed]
  6. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153-6159 (2005). [CrossRef] [PubMed]
  7. F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression,” Opt. Express 15, 7126-7131 (2007). [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  9. J. Laegsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Appl. Phys. B 95, 293-300 (2009). [CrossRef]
  10. J. Lægsgaard and P. J. Roberts, “Compression of realistic laser pulses in hollow-core photonic bandgap fibers,” J. Opt. Soc. Am. B 26, 783-791 (2009). [CrossRef]
  11. F. Gérôme, J. Dupriez, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381-2386 (2008). [CrossRef] [PubMed]
  12. JCMwave GmbH, www.jcmwave.com.
  13. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650-660 (1997). [CrossRef]
  14. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382-384 (1998). [CrossRef]
  15. J. Lægsgaard, “Control of fiber laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008). [CrossRef]
  16. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-pm femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004-14014 (2008). [CrossRef] [PubMed]
  17. C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper JFG1. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited