OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: 1808–1817

Angular variation of absorption and thermal emission from photonic crystals

W. Zhao, R. Biswas, I. Puscasu, and E. Johnson  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. 1808-1817 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The absorption and thermal exitance of two-dimensional (2D) metallic and metallodielectric photonic crystals (PCs) is simulated with rigorous scattering matrix methods. These PCs have strong thermal exitance and absorption peaks in the normal direction that shift to larger and smaller wavelengths as the angle varies away from the normal direction. These PCs redistribute the thermal emission at different wavelengths into different emission angles. There is partial suppression of photon emission at long wavelengths and enhancement at the shorter wavelength spectral range where the thermal exitance has a maximum. Surface plasmon models describe well the angular dependent absorption. Thermophotovoltaic devices utilizing PCs need to account for the strong spectral variation of the thermal exitance with angle.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(050.5298) Diffraction and gratings : Photonic crystals
(290.6815) Scattering : Thermal emission

ToC Category:
Optics at Surfaces

Original Manuscript: January 29, 2009
Revised Manuscript: June 9, 2009
Manuscript Accepted: July 14, 2009
Published: August 28, 2009

W. Zhao, R. Biswas, I. Puscasu, and E. Johnson, "Angular variation of absorption and thermal emission from photonic crystals," J. Opt. Soc. Am. B 26, 1808-1817 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003). [CrossRef] [PubMed]
  2. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98, 13531 (2005). [CrossRef]
  3. I. El-Kady, W. W. Chow, and J. Fleming, “Emission from an active photonic crystal,” Phys. Rev. B 72, 195110 (2005). [CrossRef]
  4. R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission,” Phys. Rev. B 74, 045107 (2006). [CrossRef]
  5. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003). [CrossRef]
  6. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399-3401 (2004). [CrossRef]
  7. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional Tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008). [CrossRef]
  8. M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599-1610 (2007). [CrossRef]
  9. J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications,” Nature 417, 52-55 (2002). [CrossRef] [PubMed]
  10. R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93, 063307 (2008). [CrossRef]
  11. J. H. Lee, C. H. Kim, Y.-S. Kim, K. M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett. 88, 181112 (2006). [CrossRef]
  12. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave based transfer matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  13. R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission in sub-wavelength hole arrays,” J. Opt. Soc. Am. B 24, 2489-2596 (2007). [CrossRef]
  14. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004). [CrossRef] [PubMed]
  15. M. Florescu, K. Busch, and J. P. Dowling, “Thermal radiation in photonic crystals,” Phys. Rev. B 75, 201101 (2007). [CrossRef]
  16. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002). [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons, Vol. 111, of Springer Tracts in Modern Physics (Springer-Verlag, 1988).
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  19. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  20. J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004). [CrossRef] [PubMed]
  21. Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited