OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: A101–A106

Enhancement of terahertz wave generation by cascaded χ ( 2 ) processes in Li Nb O 3

Mukesh Jewariya, Masaya Nagai, and Koichiro Tanaka  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. A101-A106 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate, to the best of our knowledge, a novel generation process of a terahertz (THz) electromagnetic wave via a noncollinear χ ( 2 ) process in Li Nb O 3 with a phase-front-controlled femtosecond Ti:sapphire laser pulse. Systematic measurements of both the THz electric field and the excitation transmitted through an Li Nb O 3 crystal at different excitation powers show that the maximum amplitude of the THz electric field increases nonlinearly above the critical input powers. This enhancement of optical rectification efficiency is attributed to the distortion of the excitation pulse shape via electro-optic (EO) phase modulation by the emitted THz wave. Actually, spectral line shapes of both the THz wave and the excitation pulse become broadened above the threshold, and they are well reproduced by numerical simulations with equivalent one-dimensionally mapped coupled equations in the frequency domain. This generation scheme shows potential optimization of further generation efficiency.

© 2009 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(040.2235) Detectors : Far infrared or terahertz

Original Manuscript: February 4, 2009
Revised Manuscript: May 21, 2009
Manuscript Accepted: June 5, 2009
Published: July 20, 2009

Mukesh Jewariya, Masaya Nagai, and Koichiro Tanaka, "Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3," J. Opt. Soc. Am. B 26, A101-A106 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sakai, Terahertz Optoelectronics (Springer, 2005). [CrossRef]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007). [CrossRef]
  3. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 110 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994). [CrossRef]
  4. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604-1606 (1996). [CrossRef]
  5. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974-3976 (2004). [CrossRef]
  6. A. Syouji, S. Saito, K. Sakai, M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Evaluation of a terahertz wave spectrum and construction of a terahertz wave-sensing system using a Yb-doped fiber laser,” J. Opt. Soc. Am. B 24, 2006-2012 (2007). [CrossRef]
  7. F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15, 13212-13220 (2007). [CrossRef] [PubMed]
  8. K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tunability,” Appl. Phys. Lett. 80, 195-197 (2002). [CrossRef]
  9. J. A. L'Huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate--Part 1: Theory,” Appl. Phys. B 86, 185-196 (2007). [CrossRef]
  10. J. A. L'Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate--Part 2: Experiments,” Appl. Phys. B 86, 197-208 (2007). [CrossRef]
  11. J. Hebling, G. Almási, and I. Z. Kozma, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10, 1161-1166 (2002). [PubMed]
  12. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593-599 (2004). [CrossRef]
  13. J. Hebling, K.-L. Yeh, M.C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, 6-19 (2008). [CrossRef]
  14. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 mu J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007). [CrossRef]
  15. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762-5768 (2005). [CrossRef] [PubMed]
  16. T. K. Gustafson, J.-P. E. Taran, P. L. Kelley, and R. Y. Chiao, “Self modulation of picosecond pulses in electro-optic crystals,” Opt. Commun. 2, 17-21 (1970). [CrossRef]
  17. X. Liu, L. J. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2): χ(2) nonlinearity,” Opt. Lett. 24, 1777-1779 (1999). [CrossRef]
  18. E. Matsubara, T. Sekikawa, and M. Yamashita, “Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature,” Appl. Phys. Lett. 92, 071104 (2008). [CrossRef]
  19. M. Nagai, M. Jewariya, Y. Ichikawa, H. Ohtake, T. Sugiura, Y. Uehara, and K. Tanaka, “Broadband and high power terahertz pulse generation beyond excitation bandwidth limitation via χ(2) cascaded processes in LiNbO3,” Opt. Express 17, 11543-11549 (2009). [CrossRef] [PubMed]
  20. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  21. L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95, 902-908 (2004). [CrossRef]
  22. Handbook of Optical Constants of Solids, EdwardD.Palik, ed. (Academic, 1985).
  23. A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23-26 (2005). [CrossRef]
  24. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005). [CrossRef]
  25. A. Yariv, Quantum Electronics, 3rd. ed. (Wiley, 1989).
  26. Y. Shen, G. L. Carr, J. B. Murphy, T. Y. Tsang, X. Wang, and X. Yang, “Spatiotemporal control of ultra short laser pulses using intense single-cycle terahertz pulses,” Phys. Rev. A 78, 043813 (2008). [CrossRef]
  27. T. Hattori and K. Takeuchi, “Simulation study on cascaded terahertz pulse generation in electro-optic crystals,” Opt. Express 15, 8076-8093 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited