OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: A107–A112

Terahertz generation from SI-GaAs stripline antenna with different structural parameters

Wei Shi, Lei Hou, Zheng Liu, and Thomas Tongue  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. A107-A112 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally compared the performance of semi-insulating (SI)-GaAs stripline antennas with different gaps, electrode widths, and electrode materials. Large gap antennas have high electrical-to-terahertz (THz) and optical-to-THz conversion efficiencies. The peak frequency slightly decreases with the increase of the antenna gap. The stability of an antenna with narrower electrodes is less than that of an antenna with wider electrodes because the wider electrodes can remove more heat from the antenna. We made and placed two metal pads beside the electrodes to act as a heat sink, which caused the performance of the antenna to be much more stable. The antenna with AuGeNi electrodes has a higher breakdown voltage and better stability than the antenna with Ti Au electrodes. The dynamic range of an antenna with a 150 μ m gap, 100 μ m AuGeNi electrodes, and a heat sink is 6300 without purging.

© 2009 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.6080) Optical devices : Sources
(250.0250) Optoelectronics : Optoelectronics
(300.6495) Spectroscopy : Spectroscopy, teraherz

Original Manuscript: February 2, 2009
Revised Manuscript: April 8, 2009
Manuscript Accepted: June 15, 2009
Published: August 11, 2009

Wei Shi, Lei Hou, Zheng Liu, and Thomas Tongue, "Terahertz generation from SI-GaAs stripline antenna with different structural parameters," J. Opt. Soc. Am. B 26, A107-A112 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am. A 17, 74-83 (2000). [CrossRef]
  2. B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005). [CrossRef]
  3. K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008). [CrossRef]
  4. V. P. Wallace, E. MacPherson, J. A. Zeitler, and C. Reid, “Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation,” J. Opt. Soc. Am. A 25, 3120-3133 (2008). [CrossRef]
  5. N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005). [CrossRef]
  6. Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004). [CrossRef]
  7. H. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14, 415-423 (2006). [CrossRef] [PubMed]
  8. J. O'Hara and D. Grischkowsky, “Quasi-optic synthetic phased-array terahertz imaging,” J. Opt. Soc. Am. B 21, 1178-1191 (2004). [CrossRef]
  9. R. A. Cheville, R. W. McGowan, and D. Grischkowsky, “Time-resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269-272 (1998). [CrossRef]
  10. http://www.zomega-terahertz.com/.
  11. J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002). [CrossRef]
  12. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047-7057 (2007). [CrossRef] [PubMed]
  13. J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001). [CrossRef]
  14. M. Reid and R. Fedosejevsa, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005). [CrossRef]
  15. G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007). [CrossRef] [PubMed]
  16. A. Rice, Y. Jin, X. F. Ma, and X.-C. Zhang, “Terahertz optical rectification from <110> zinc-blend crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994).<< [CrossRef]
  17. F. Kadlec, P. Kuzel, and J. Coutaz, “Study of terahertz radiation generated by optical rectification on thin gold films,” Opt. Lett. 30, 1402-1404 (2005). [CrossRef] [PubMed]
  18. X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66-67, 488-492 (1996).
  19. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005). [CrossRef]
  20. P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems” Semicond. Sci. Technol. 20, S121-S127 (2005). [CrossRef]
  21. J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992). [CrossRef]
  22. W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004). [CrossRef]
  23. D. S. Kim, “Efficient terahertz generation using trap-enhanced fields in semi-insulating photoconductors by spatially broadened excitation,” J. Appl. Phys. 101, 053105 (2007). [CrossRef]
  24. D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz source,” Appl. Phys. Lett. 88, 161117 (2006). [CrossRef]
  25. A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997). [CrossRef]
  26. R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).
  27. M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406-412 (1980). [CrossRef]
  28. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008). [CrossRef]
  29. R. Williams, Modern GaAs Processing Methods (Artech House, 1990), p. 217.
  30. C. Fattinger and D. Grischkowsky, “Terahertz beam,” Appl. Phys. Lett. 54, 490-492 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited