OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: A23–A28

Investigation of terahertz Sommerfeld wave propagation along conical metal wire

Xiao-Yong He  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. A23-A28 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The waveguide properties of a terahertz wave propagating along conical metal wire have been investigated under the framework of the Sommerfeld model. The effects of composed materials, metal wire diameter, and temperature on the waveguide characteristics have been shown and discussed. The numerical calculation agrees well with the experimental results shown by Ji et al. , and it predicts that a metal wire waveguide shows better propagation properties at lower temperature. The ratio of energy density contours demonstrate that energy concentration at the end-tip increases with the decreasing of frequency, end-tip diameter, and radial distance from metal wire surface. As the temperature decreases, the local field intensity increases, which may result from the higher conductivity and smaller skin depth of metal at lower temperature. Because the energy density is very sensitive to temperature, the conical metal wire tip can be used to measure the changes of temperature accurately, which may be confirmed by experiment in the future.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(040.2235) Detectors : Far infrared or terahertz

Original Manuscript: January 30, 2009
Revised Manuscript: April 8, 2009
Manuscript Accepted: April 10, 2009
Published: May 14, 2009

Xiao-Yong He, "Investigation of terahertz Sommerfeld wave propagation along conical metal wire," J. Opt. Soc. Am. B 26, A23-A28 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26-33 (2002). [CrossRef]
  2. M. Lee and M. C. Wanke, “Searching for a solid-state terahertz technology,” Science 316, 64-65 (2007). [CrossRef] [PubMed]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  4. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015-1017 (2003). [CrossRef]
  5. H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008). [CrossRef]
  6. J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79, 3524-3526 (2006). [CrossRef]
  7. J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 211115 (2006). [CrossRef]
  8. W. Feng and J. C. Cao, “Theoretical study of terahertz current oscillation in GaAs1−xNx,” J. Appl. Phys. 104, 013111 (2008). [CrossRef]
  9. J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003). [CrossRef] [PubMed]
  10. H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photo detector,” Appl. Phys. Lett. 84, 4068-4070 (2004). [CrossRef]
  11. C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature (London) 404, 584-588 (2004). [CrossRef]
  12. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449-4451 (2000). [CrossRef]
  13. S. P. Jamison, R. W. McGown, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000). [CrossRef]
  14. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002). [CrossRef]
  15. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263-5268 (2004). [CrossRef] [PubMed]
  16. X. Y. He and H. X. Lu, “Investigation on propagation properties of terahertz waveguide hollow plastic fiber,” Opt. Fiber Technol. 12, 145-148 (2009). [CrossRef]
  17. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949-1954 (2008). [CrossRef]
  18. J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005). [CrossRef]
  19. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  20. X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009). [CrossRef]
  21. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  22. R. W. McGowan, G. Gallow, and D. Grischnowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431-1433 (1999). [CrossRef]
  23. K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006). [CrossRef] [PubMed]
  24. J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279-290 (2006). [CrossRef] [PubMed]
  25. N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87, 071106 (2005). [CrossRef]
  26. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028-7034 (2005). [CrossRef] [PubMed]
  27. L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008). [CrossRef]
  28. Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271-278 (2008). [CrossRef] [PubMed]
  29. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  30. H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16, 18241-18248 (2008). [CrossRef] [PubMed]
  31. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  32. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007). [CrossRef]
  33. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009). [CrossRef]
  34. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131-12144 (2007). [CrossRef] [PubMed]
  35. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119-1128 (1950). [CrossRef]
  36. X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066-2069 (2006). [CrossRef]
  37. M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246-254 (1962). [CrossRef]
  38. T.-I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  39. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815-10822 (2005). [CrossRef] [PubMed]
  40. N. C. J. van der Valk, “Towards terahertz microscopy,” Ph.D. dissertation (Delft University of Technology, 2005).
  41. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493-4499 (1985). [CrossRef] [PubMed]
  42. CRC Handbook of Chemistry and Physics, 73rd ed., D.R.Lide, ed. (CRC Press, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited