OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: A35–A51

Terahertz time-domain spectroscopy of electromagnons in multiferroic perovskite manganites [Invited]

N. Kida, Y. Takahashi, J. S. Lee, R. Shimano, Y. Yamasaki, Y. Kaneko, S. Miyahara, N. Furukawa, T. Arima, and Y. Tokura  »View Author Affiliations


JOSA B, Vol. 26, Issue 9, pp. A35-A51 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000A35


View Full Text Article

Enhanced HTML    Acrobat PDF (2338 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent spectroscopic studies at terahertz frequencies for a variety of multiferroics endowed with both ferroelectric and magnetic orders have revealed the possible emergence of a new collective excitation, frequently referred to as electromagnon. It is magnetic in origin, but it becomes active in response to the electric field component of light. Here we give an overview of our recent advance in the terahertz time-domain spectroscopy of electromagnons, or electric-dipole active magnetic resonances, focused on perovskite manganites— R Mn O 3 (R denotes rare-earth ions). The respective electric and magnetic contributions to the observed magnetic resonance are firmly identified by the measurements of the light-polarization dependence using a complete set of the crystal orientations. We extract general optical features in a variety of the spin-ordered phases, including the A-type antiferromagnetic, collinear spin-ordered phase and the ferroelectric b c and a b spiral spin-ordered phases, which are realized by tuning the chemical composition of R, the temperature, and the external magnetic field. In addition to the antiferromagnetic resonances of Mn ions driven by the magnetic field component of light, we clarify that the electromagnon appears only for light that is polarized along the a axis, even in the collinear spin-ordered phase, and it grows in intensity with evolution of the spiral spin order but is independent of the direction of the spiral spin plane ( b c or a b ) or, equivalently, the direction of the ferroelectric polarization P s ( P s c or P s a ). A possible origin of the observed magnetic resonances at terahertz frequencies is discussed by comparing the systematic experimental data presented here with theoretical considerations based on the Heisenberg model.

© 2009 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(300.6495) Spectroscopy : Spectroscopy, teraherz

History
Original Manuscript: March 16, 2009
Manuscript Accepted: April 15, 2009
Published: June 12, 2009

Citation
N. Kida, Y. Takahashi, J. S. Lee, R. Shimano, Y. Yamasaki, Y. Kaneko, S. Miyahara, N. Furukawa, T. Arima, and Y. Tokura, "Terahertz time-domain spectroscopy of electromagnons in multiferroic perovskite manganites [Invited]," J. Opt. Soc. Am. B 26, A35-A51 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-9-A35


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Tokura, “Multiferroics as quantum electromagnets,” Science 312, 1481-1482 (2006). [CrossRef] [PubMed]
  2. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization,” Nature (London) 426, 55-58 (2003). [CrossRef]
  3. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, “Magnetic phase control by an electric field,” Nature (London) 430, 541-544 (2004). [CrossRef]
  4. S.-W. Cheong and M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity,” Nature Mater. 6, 13-20 (2007). [CrossRef]
  5. R. Ramesh and N. A. Spaldin, “Multiferroics: progress and prospects in thin films,” Nature Mater. 6, 21-29 (2007). [CrossRef]
  6. Y. Tokura, “Multiferroics-toward strong coupling between magnetism and polarization in a solid,” J. Magn. Magn. Mater. 310, 1145-1150 (2007). [CrossRef]
  7. T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, “Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites,” Phys. Rev. Lett. 92, 257201 (2004). [CrossRef] [PubMed]
  8. T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, “Magnetoelectric phase diagrams of orthorhombic RMnO3,” Phys. Rev. B 71, 224425 (2005). [CrossRef]
  9. W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials,” Nature (London) 442, 759-765 (2006). [CrossRef]
  10. T. H. O'Dell, The Electrodynamics of Magneto-electric Media (North-Holland, Amsterdam, 1970).
  11. Magnetoelectric Interaction Phenomena in Crystals (eds. A.J.Freeman and H.Schmid) (Gordon and Breach, London, 1975).
  12. M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S.-W. Cheong, O. P. Vajk, and J. W. Lynn, “Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3,” Phys. Rev. Lett. 95, 087206 (2005). [CrossRef] [PubMed]
  13. H. Katsura, N. Nagaosa, and A. V. Balatsky, “Spin current and magnetoelectric effect in noncollinear magnets,” Phys. Rev. Lett. 95, 057205 (2005). [CrossRef] [PubMed]
  14. Y. Yamasaki, H. Sagayama, T. Goto, M. Matsuura, K. Hirota, T. Arima, and Y. Tokura, “Electric control of spin helicity in a magnetic ferroelectric,” Phys. Rev. Lett. 98, 147204 (2007). [CrossRef] [PubMed]
  15. N. Aliouane, K. Schmalzl, D. Senff, A. Maljuk, K. Prokeš, M. Braden, and D. N. Argyriou, “Flop of electric polarization driven by the flop of the Mn spin cycloid in multiferroic TbMnO3,” Phys. Rev. Lett. 102, 207205 (2009). [CrossRef] [PubMed]
  16. Y. Yamasaki, H. Sagayama, N. Abe, T. Arima, K. Sasai, M. Matsuura, K. Hirota, D. Okuyama, Y. Noda, and Y. Tokura, “Cycloidal spin order in the a axis polarized ferroelectric phase of orthorhombic perovskite manganite,” Phys. Rev. Lett. 101, 097204 (2008). [CrossRef] [PubMed]
  17. M. Mostovoy, “Ferroelectricity in spiral magnets,” Phys. Rev. Lett. 96, 067601 (2006). [CrossRef] [PubMed]
  18. I. A. Sergienko and E. Datotto, “Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites,” Phys. Rev. B 73, 094434 (2006). [CrossRef]
  19. M. Mochizuki and N. Furukawa, “Mechanism of lattice-distortion-induced electric-polarization flop in the multiferroic perovskite manganites,” J. Phys. Soc. Jpn. 78, 053704 (2008). [CrossRef]
  20. G. A. Smolenski and I. E. Chupis, “Ferroelectromagnets,” Usp. Fiz. Nauk 137, 415-448 (1982) G. A. Smolenski and I. E. Chupis[Sov. Phys. Usp. 25, 475-493 (1982)]. [CrossRef]
  21. V. G. Bar'yakhtar and I. E. Chupis, “Quantum theory of oscillations in a ferroelectric ferromagnet,” Fiz. Tverd. Tela (Leningrad) 11, 3242-3247 (1969) V. G. Bar'yakhtar and I. E. Chupis[Sov. Phys. Solid State 11, 2628-2631 (1970)].
  22. A. M. Balbashov, G. V. Kozlov, A. A. Mukhin, and A. S. Prokhorov, “Submillimeter Spectroscopy of Antiferromagnetic Dielectrics. Rare-earth Orthoferrites,” in High Frequency Processes in Magnetic Materials, (eds. G.Srinivasan and A.N.Slavin) pp 56-98 (World Scientific, Singapore, 1995).
  23. A. Pimenov, A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, A. M. Balbashov, and A. Loidl, “Possible evidence for electromagnon in multiferroic manganites,” Nat. Phys. 2, 97-100 (2006). [CrossRef]
  24. A. Pimenov, T. Rudolf, F. Mayr, A. Loidl, A. A. Mukhin, and A. M. Balbashov, “Coupling of phonons and electromagnons in GdMnO3,” Phys. Rev. B 74, 100403(R) (2006). [CrossRef]
  25. H. Katsura, A. V. Balatsky, and N. Nagaosa, “Dynamical magnetoelectric coupling in helical magnet,” Phys. Rev. Lett. 98, 027203 (2007). [CrossRef] [PubMed]
  26. D. Senff, P. Link, K. Hradil, A. Hiess, L. P. Regnault, Y. Sidis, N. Aliouane, D. N. Argyriou, and M. Braden, “Magnetic excitations in TbMnO3: Evidence for a hybridized soft mode,” Phys. Rev. Lett. 98, 137206 (2007). [CrossRef] [PubMed]
  27. R. Valdés Aguilar, A. B. Sushkov, C. L. Zhang, Y. J. Choi, S.-W. Cheong, and H. D. Drew, “Colossal magnon-phonon coupling in multiferroic Eu0.75Y0.25MnO3,” Phys. Rev. B 76, 060404(R) (2007). [CrossRef]
  28. A. Pimenov, A. Loidl, A. A. Mukhin, V. D. Travkin, V. Yu. Ivanov, and A. M. Balbashov, “Terahertz spectroscopy of electromagnons in Eu1−xYxMnO3,” Phys. Rev. B 77, 014438 (2008). [CrossRef]
  29. N. Kida, Y. Ikebe, Y. Takahashi, J. P. He, Y. Kaneko, Y. Yamasaki, R. Shimano, T. Arima, N. Nagaosa, and Y. Tokura, “Electrically driven spin excitation in the ferroelectric magnet DyMnO3,” Phys. Rev. B 78, 104414 (2008). [CrossRef]
  30. D. Senff, P. Link, N. Aliouane, D. N. Argyriou, and M. Braden, “Field dependence of magnetic correlations through the polarization flop transition in multiferroic TbMnO3: Evidence for a magnetic memory effect,” Phys. Rev. B 77, 174419 (2008). [CrossRef]
  31. Y. Takahashi, N. Kida, Y. Yamasaki, J. Fujioka, T. Arima, R. Shimano, S. Miyahara, M. Mochizuki, N. Furukawa, and Y. Tokura, “Evidence for an electric-dipole active continuum band of spin excitations in multiferroic TbMnO3,” Phys. Rev. Lett. 101, 187201 (2008). [CrossRef] [PubMed]
  32. N. Kida, Y. Yamasaki, R. Shimano, T. Arima, and Y. Tokura, “Electric-dipole active two-magnon excitation in ab spiral spin phase of a ferroelectric magnet Gd0.7Tb0.3MnO3,” J. Phys. Soc. Jpn. 77, 123704 (2008). [CrossRef]
  33. N. Kida, Y. Yamasaki, J. P. He, Y. Kaneko, Y. Ikebe, Y. Takahashi, R. Shimano, T. Arima, N. Nagaosa, and Y. Tokura, “Electrically driven spin excitation at THz frequencies in bc and ab spiral spin phases of perovskite manganites,” J. Phys. Conf. Ser. 148, 012038 (2009); Proc. LXIII Yamada Conf. Photo-induced Phase Transition and Cooperative Phenomena. [CrossRef]
  34. R. Valdés Aguilar, M. Mostovoy, A. B. Sushkov, C. L. Zhang, Y. J. Choi, S.-W. Cheong, and H. D. Drew, “Origin of electromagnon excitations in RMnO3,” Phys. Rev. Lett. 102, 047203 (2009). [CrossRef] [PubMed]
  35. S. Miyahara and N. Furukawa, “Theory of electric field induced one-magnon resonance in cycloidal spin magnets,” Preprint at http://arxiv.org/cond-mat/0811.4082 (2008).
  36. A. Pimenov, A. Shuvaev, A. Loidl, F. Schrettle, A. A. Mukhin, V. D. Travkin, V. Yu. Ivanov, and A. M. Balbashov, “Magnetic and magnetoelectric excitations in TbMnO3,” Phys. Rev. Lett. 102, 107203 (2009). [CrossRef] [PubMed]
  37. J. S. Lee, N. Kida, S. Miyahara, Y. Yamasaki, Y. Takahashi, R. Shimano, N. Furukawa, and Y. Tokura, “Systematics of electromagnons in the spiral spin-ordered states of RMnO3,” Phys. Rev. B 79, 18043(R) (2009).
  38. Y. Takahashi, Y. Yamasaki, N. Kida, Y. Kaneko, T. Arima, R. Shimano, and Y. Tokura, “Comprehensive study on electromagnons and their coupling with optical phonons in Eu1−xYxMnO3 (x=0.1, 0.2, 0.3, 0.4, and 0.45),” submitted for publication (2009).
  39. J. S. Lee, N. Kida, Y. Yamasaki, M. Mochizuki, R. Shimano, and Y. Tokura, “Lattice dynamics of multiferroic perovskite manganites,” manuscript in preparation.
  40. A. Pimenov, A. M. Shuvaev, A. A. Mukhin, and A. Loidl, “Electromagnons in multiferroic manganites,” J. Phys.: Condens. Matter 20, 434209 (2008). [CrossRef]
  41. D. Senff, N. Aliouane, D. N. Argyriou, A. Hiess, L. P. Regnault, P. Link, K. Hradil, Y. Sidis, and M. Braden, “Magnetic excitations in a cycloidal magnet: the magnon spectrum of multiferroic TbMnO3,” J. Phys.: Condens. Matter 20, 434212 (2008). [CrossRef]
  42. S. Pailhès, X. Fabrèges, L. P. Règnault, L. Pinsard-Godart, I. Mirebeau, F. Moussa, M. Hennion, and S. Petit, “Hybrid Goldstone modes in multiferroic YMnO3 studied by polarized inelastic neutron scattering,” Phys. Rev. B 79, 134409 (2009). [CrossRef]
  43. M. Cazayous, Y. Gallais, A. Sacuto, R. de Sousa, D. Lebeugle, and D. Colson, “Possible observation of cycloidal electromagnons in BiFeO3,” Phys. Rev. Lett. 101, 037601 (2008). [CrossRef] [PubMed]
  44. M. K. Singh, R. S. Katiyar, and J. F. Scott, “New magnetic phase transitions in BiFeO3,” J. Phys.: Condens. Matter 20, 252203 (2008). [CrossRef]
  45. E. Golovenchits and V. Sanina, “Magnetic and magnetoelectric dynamics in RMn2O5 (R=Gd and Eu),” J. Phys.: Condens. Matter 16, 4325-4334 (2004). [CrossRef]
  46. A. B. Sushkov, R. Valdés Aguilar, S. Park, S.-W. Cheong, and H. D. Drew, “Electromagnons in multiferroic YMn2O5 and TbMn2O5,” Phys. Rev. Lett. 98, 027202 (2007). [CrossRef] [PubMed]
  47. C. Fang and J. Hu, “An effective model of magnetoelectricity in multiferroic RMn2O5,” EPL 82, 57005 (2008). [CrossRef]
  48. T. Arima, Y. Tokura, and J. B. Torrance, “Variation of optical gap in perovskite-type 3d transition-metal oxides,” Phys. Rev. B 48, 17006-17009 (1993). [CrossRef]
  49. T. Arima and Y. Tokura, “Optical study of electronic structure in perovskite-type RMO3 (R=La,Y; M=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu),” J. Phys. Soc. Jpn. 64, 2488-2501 (1995). [CrossRef]
  50. I. S. Smirnova, “Normal modes of the LaMnO3 Pnma phase: comparison with La2CuO4 Cmna phase,” Physica B 262, 247-261 (1999). [CrossRef]
  51. R. Kajimoto, H. Mochizuki, H. Yoshizawa, H. Shintani, T. Kimura, and Y. Tokura, “R-dependence of spin exchange interactions in RMnO3 (R=rare-earth ions),” J. Phys. Soc. Jpn. 74, 2430-2433 (2005). [CrossRef]
  52. T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. Ishizaka, and Y. Tokura, “Distorted perovskite with eg1 configuration as a frusrated spin system,” Phys. Rev. B 68, 060403(R) (2003). [CrossRef]
  53. T. Goto, Y. Yamasaki, H. Watanabe, T. Kimura, and Y. Tokura, “Anticorrelation between ferromagnetism and ferroelectricity in perovskite manganites,” Phys. Rev. B 72, 220403(R) (2005). [CrossRef]
  54. J. Strempfer, B. Bohnenbuck, M. Mostovoy, N. Aliouane, D. N. Argyriou, F. Schrettle, J. Hemberger, A. Krimmel, and M. v. Zimmermann, “Absence of commensurate ordering at the polarization flop transition in multiferroic DyMnO3,” Phys. Rev. B 75, 212402 (2007). [CrossRef]
  55. T. Arima, T. Goto, Y. Yamasaki, S. Miyasaka, K. Ishii, M. Tsubota, T. Inami, Y. Murakami, and Y. Tokura, “Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3 and TbMnO3, compounds,” Phys. Rev. B 72, 100102(R) (2005). [CrossRef]
  56. A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, A. Pimenov, A. Loidl, and A. M. Balbashov, “Antiferromagnetic resonance in the canted phase of La1−xSrxMnO3: Experimental evidence against electronic phase separation,” Europhys. Lett. 49, 514-520 (2000). [CrossRef]
  57. K. Hirota, N. Kaneko, A. Nishizawa, and Y. Endoh, “Two-dimensional planar ferromagnetic coupling in LaMnO3,” J. Phys. Soc. Jpn. 65, 3736-3739 (1996). [CrossRef]
  58. F. Kagawa, M. Mochizuki, Y. Onose, H. Murakawa, Y. Kaneko, N. Furukawa, and Y. Tokura, “Dynamics of multiferroic domain wall in spin-cycloidal ferroelectric DyMnO3,” Phys. Rev. Lett. 102, 057604 (2009). [CrossRef] [PubMed]
  59. T. Moriya, “Far infrared absorption by two magnon excitations in antiferromagnets,” J. Phys. Soc. Jpn. 21, 926-932 (1966). [CrossRef]
  60. B. R. Cooper, R. J. Elliott, S. J. Nettel, and H. Suhl, “Theory of magnetic resonance in the heavy rare-earth metals,” Phys. Rev. 127, 57-68 (1962). [CrossRef]
  61. C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, “Microscopic theory of spin-polarization coupling in multiferroics transition metal oxides,” Phys. Rev. B 76, 144424 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited