OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: A52–A57

Application of plasmon-resonant microchip emitters to broadband terahertz spectroscopic measurement

Yuki Tsuda, Tsuneyoshi Komori, Abdelouahad El Fatimy, Kouhei Horiike, Tetsuya Suemitsu, and Taiichi Otsuji  »View Author Affiliations


JOSA B, Vol. 26, Issue 9, pp. A52-A57 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000A52


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We are proposing our original 2D-plasmon-resonant microchip emitter as a new terahertz light source. The structure is based on a high-electron-mobility transistor and features interdigitated dual-grating gates. The dual-grating gates can alternately modulate the 2D electron densities to periodically distribute the plasmonic cavities along the channel, acting as an antenna. The die fabricated in a 70 μ m square with a double-deck In Ga P In Ga As Ga As material system can emit 0.5 6.5 THz radiation with microwatt power even at room temperature from self-oscillating 2D plasmons under the DC-biased conditions. The microchip emitter was introduced into a Fourier-transformed far-infrared spectrometer as a light source. Its applicability to broadband terahertz spectroscopy was verified through real measurements for atmospheric water vapor and several sugar groups.

© 2009 Optical Society of America

OCIS Codes
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(250.5403) Optoelectronics : Plasmonics
(300.6495) Spectroscopy : Spectroscopy, teraherz

History
Original Manuscript: February 2, 2009
Revised Manuscript: April 11, 2009
Manuscript Accepted: May 6, 2009
Published: June 12, 2009

Citation
Yuki Tsuda, Tsuneyoshi Komori, Abdelouahad El Fatimy, Kouhei Horiike, Tetsuya Suemitsu, and Taiichi Otsuji, "Application of plasmon-resonant microchip emitters to broadband terahertz spectroscopic measurement," J. Opt. Soc. Am. B 26, A52-A57 (2009)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-9-A52


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics . 1, 97-105 (2007). [CrossRef]
  2. R. A. Hopfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49, 1667-1671 (1982). [CrossRef]
  3. D. C. Tsui, E. Gornik, and R. A. Logan, “Far infrared emission from plasma oscillations of Si inversion layers,” Solid State Commun. 35, 875-877 (1980). [CrossRef]
  4. N. Okisu, Y. Sambe, and T. Kobayashi, “Far-infrared emission from two-dimensional plasmons in AlGaAs/GaAs heterointerfaces,” Appl. Phys. Lett. 48, 776-778 (1986). [CrossRef]
  5. R. Hopfel, G. Lindemann, E. Gornik, G. Stangl, A. C. Gossard, and W. Wiegmann, “Cyclotron and plasmon emission from two-dimensional electrons in GaAs,” Surf. Sci. 113, 118-123 (1982). [CrossRef]
  6. R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Armed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, A. C. Jones, C. R. Whitehouse, and N. Apsley, “Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas,” J. Appl. Phys. 71, 6049-6061 (1992). [CrossRef]
  7. K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, “Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions,” Appl. Phys. Lett. 67, 2326 (1995). [CrossRef]
  8. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Phys. Rev. Lett. 71, 2465-2468 (1993). [CrossRef] [PubMed]
  9. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331 (2004). [CrossRef]
  10. J. Lusakowski, W. Knap, N. Dyakonova, and L. Varani, “Voltage tunable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor,” J. Appl. Phys. 97, 064307 (2005). [CrossRef]
  11. N. Dyakonova, F. Teppe, J. Lusakowski, W. Knap, M. Levinshtein, A. P. Dmitriev, M. S. Shur, S. Bollaert, and A. Cappy, “Magnetic field effect on the terahertz emission from nanometer InGaAs/AlInAs high electron mobility transistors,” J. Appl. Phys. 97, 114313 (2005). [CrossRef]
  12. S. A. Mikhailov, “Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems,” Phys. Rev. B 58, 1517-1532 (1998). [CrossRef]
  13. P. Bakshi, K. Kempa, A. Scorupsky, C. G. Du, G. Feng, R. Zobl, G. Strasser, C. Rauch, Ch. Pacher, K. Unterrainer, and E. Gornik, “Plasmon-based terahertz emission from quantum well structures,” Appl. Phys. Lett. 75, 1685 (1999). [CrossRef]
  14. R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620 (2001). [CrossRef]
  15. A. Tredicucci, R. Kohler, L. Mahler, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “Terahertz quantum cascade lasers--first demonstration and novel concepts,” Semicond. Sci. Technol. 20, S222-S227 (2005). [CrossRef]
  16. V. Ryzhii, A. Satou, and M. Shur, “Plasma instability and terahertz generation in HEMTs due to electron transit-time effect,” IEICE Trans. Electron. E89-C, 1012-1019 (2006). [CrossRef]
  17. V. Ryzhii, A. Satou, M. Ryzhii, T. Otsuji, and M. S. Shur, “Mechanism of self-excitation of terahertz plasma oscillations in periodically double-gated electron channels,” J. Phys. Condens. Matter 20, 384207 (2008). [CrossRef] [PubMed]
  18. V. Ryzhii, N. A. Bannov, and V. A. Fedirko, “Ballistic and quasiballistic transport in semiconductor structures (review),” Sov. Phys. Semicond. 18, 481-491 (1984).
  19. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637 (2002). [CrossRef]
  20. T. Otsuji, M. Hanabe, and O. Ogawara, “Terahertz plasma wave resonance of two-dimensional electrons in InGaP/InGaAs/GaAs high-electron-mobility transistors,” Appl. Phys. Lett. 85, 2119 (2004). [CrossRef]
  21. F. Teppe, W. Knap, D. Veksler, and M. S. Shur, “Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor,” Appl. Phys. Lett. 87, 052107 (2005). [CrossRef]
  22. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors,” Appl. Phys. Lett. 89, 131926 (2006). [CrossRef]
  23. T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, “A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure,” Opt. Express 14, 4815-4825 (2006). [CrossRef] [PubMed]
  24. M. Hanabe, T. Nishimura, M. Miyamoto, T. Otsuji, and E. Sano, “Structure-sensitive design for wider tunable operation of terahertz plasmon-resonant photomixer,” IEICE Trans. Electron. E89-C, 985-992 (2006). [CrossRef]
  25. T. Otsuji, Y. M. Meziani, M. Hanabe, T. Ishibashi, T. Uno, and E. Sano, “Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems,” Appl. Phys. Lett. 89, 263502 (2006). [CrossRef]
  26. Y. M. Meziani, Y. Otsuji, M. Hanabe, T. Ishibashi, T. Uno, and E. Sano, “Room temperature generation of terahertz radiation from a grating-bicoupled device: size effect,” Appl. Phys. Lett. 90, 061105 (2007). [CrossRef]
  27. Y. M. Meziani, T. Otsuji, M. Hanabe, and E. Sano, “Threshold behavior of photoinduced plasmon-resonant self-oscillation in a new interdigitated grating gates device,” Jpn. J. Appl. Phys., Part 1 46, 2409-2412 (2007). [CrossRef]
  28. T. Suemitsu, Yahya M. Meziani, Y. Hosono, M. Hanabe, T. Otsuji, and E. Sano, “Novel plasmon-resonant terahertz-wave emitter using a double-decked HEMT structure,” in 65th Annual Device Research Conference (IEEE, 2007), pp. 157-158. [CrossRef]
  29. T. Otsuji, Y. M. Meziani, M. Hanabe, T. Nishimura, and E. Sano, “Emission of terahertz radiation from InGaP/InGaAs/GaAs grating-bicoupled plasmon-resonant emitter,” Solid-State Electron. 51, 1319-1327 (2007). [CrossRef]
  30. Y. M. Meziani, M. Hanabe, T. Otsuji, and E. Sano, “Bolometric detection of terahertz radiation from new grating gates device,” Phys. Status Solidi C 5, 282-285 (2008). [CrossRef]
  31. Y. M. Meziani, H. Handa, W. Knap., T. Otsuji, E. Sano, V. V. Popov, G. M. Tsymbalov, D. Coquillat, and F. Teppe, “Room temperature terahertz emission from grating coupled two-dimensional plasmons,” Appl. Phys. Lett. 92, 201108 (2008). [CrossRef]
  32. T. Nishimura, H. Handa, H. Tsuda, T. Suemitsu, Y. M. Meziani, W. Knap, T. Otsuji, E. Sano, V. Ryzhii, A. Satou, V. V. Popov, D. Coquillat, and F. Teppe, “Broadband terahertz emission from dual-grating gate HEMT's--mechanism and emission spectral profile,” in 65th Annual Device Research Conference (IEEE, 2007), pp. 263-264.
  33. T. Otsuji, Y. M. Meziani, T. Nishimura, T. Suemitsu, W. Knap, E. Sano, T. Asano, and V. V. Popov, “Emission of terahertz radiation from dual-grating-gates plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems,” J. Phys.: Condens. Matter 20, 384206 (2008). [CrossRef]
  34. Jet Propulsion Laboratory, NASA, “JPL Catalog,” http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html.
  35. Tera-photonics Laboratory, RIKEN Sendai, “THz database,” http://www.riken.jp/THzdatabase.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited