OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry Van Driel
  • Vol. 26, Iss. 9 — Sep. 1, 2009
  • pp: A6–A13

An investigation of the lowest-order transverse-electric ( TE 1 ) mode of the parallel-plate waveguide for THz pulse propagation

Rajind Mendis and Daniel M. Mittleman  »View Author Affiliations

JOSA B, Vol. 26, Issue 9, pp. A6-A13 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally and theoretically investigate the lowest-order transverse-electric ( TE 1 ) mode of the parallel-plate waveguide (PPWG) for the propagation of broadband THz pulses. We demonstrate undistorted THz pulse propagation via the single TE 1 mode, solving the group-velocity-dispersion and spectral-filtering problems caused by the mode’s low-frequency cutoff. We observe a remarkable counterintuitive property of the TE 1 mode: its attenuation decreases with increasing frequency for all frequencies above cutoff. This phenomenon has not been observed with any other THz waveguide to date, and it can enable extremely low-loss propagation. We present a physical interpretation of this frequency-dependent behavior using a simple plane-wave description of the TE 1 mode propagation. We also find that it is possible to achieve almost 100% coupling to the TE 1 mode from a focused free-space Gaussian beam. In addition, using the above plane-wave analysis, we show how to mitigate the diffraction losses inherent to long path-length PPWGs via the use of transverse-concave plates.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(320.5390) Ultrafast optics : Picosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping

Original Manuscript: February 2, 2009
Manuscript Accepted: March 10, 2009
Published: April 27, 2009

Rajind Mendis and Daniel M. Mittleman, "An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation," J. Opt. Soc. Am. B 26, A6-A13 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851-863 (2000). [CrossRef]
  2. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987-1989 (2000). [CrossRef]
  3. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449-4451 (2001). [CrossRef]
  4. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846-848 (2001). [CrossRef]
  5. R. Mendis and D. Gischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001). [CrossRef]
  6. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634-2636 (2002). [CrossRef]
  7. T. -I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps electrical pulses on sub-mm coaxial transmission lines,” Appl. Phys. Lett. 85, 6092-6094 (2004). [CrossRef]
  8. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  9. T. -I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  10. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001-2008 (2005). [CrossRef]
  11. M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007). [CrossRef]
  12. R. Mendis, “Comment on “Low-loss terahertz ribbon waveguides”,” Appl. Opt. 47, 4231-4234 (2008). [CrossRef] [PubMed]
  13. H. Nishihara, T. Inoue, and J. Koyama, “Low-loss parallel-plate waveguide at 10.6 μm,” Appl. Phys. Lett. 25, 391-393 (1974). [CrossRef]
  14. E. Garmire, T. McMahon, and M. Bass, “Flexible infrared-transmissive metal waveguides,” Appl. Phys. Lett. 29, 254-256 (1976). [CrossRef]
  15. Y. Mizushima, T. Sugeta, T. Urisu, H. Nishihara, and J. Koyama, “Ultralow loss waveguide for long distance transmission,” Appl. Opt. 19, 3259-3260 (1980). [CrossRef] [PubMed]
  16. N. Marcuvitz, Waveguide Handbook (Peregrinus, 1993).
  17. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  18. Y. Jiang, C. Jing, W. A. Peebles, D. L. Brower, and J. L. Doane, “Improved performance of an optically pumped FIR laser using metallic waveguide,” Rev. Sci. Instrum. 63, 4672-4674 (1992). [CrossRef]
  19. T. A. Abele, D. A. Alsberg, and P. T. Hutchison, “A high-capacity digital communication system using TE01 transmission in circular waveguide,” IEEE Trans. Microwave Theory Tech. 23, 326-333 (1975). [CrossRef]
  20. J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited