OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 1–9

Dynamics of second-harmonic generation in a photovoltaic photorefractive quadratic medium

Federico Pettazzi, Virginie Coda, Gil Fanjoux, Mathieu Chauvet, and Eugenio Fazio  »View Author Affiliations

JOSA B, Vol. 27, Issue 1, pp. 1-9 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate second-harmonic generation (SHG) in a photorefractive photovoltaic medium such as lithium niobate. Our numerical model reveals the complex dynamics of the parametric process during the buildup of the index modification due to the photorefractive (PR) nonlinearity. We investigate a condition in which no external field is applied to the crystal, resulting in a defocusing nonlinearity, as well as the case in which an external bias is applied, producing a self-focusing effect that can enhance the conversion efficiency of the parametric process. We also find the conditions for the initial phase matching and for the background illumination leading to a stable self-confined propagation of the second-harmonic generated light. The developed numerical model shows that as a general case SHG in a self-focusing PR medium results in mode beating inside the generated waveguide, as experimentally observed.

© 2009 Optical Society of America

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: August 10, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 8, 2009
Published: December 10, 2009

Federico Pettazzi, Virginie Coda, Gil Fanjoux, Mathieu Chauvet, and Eugenio Fazio, "Dynamics of second-harmonic generation in a photovoltaic photorefractive quadratic medium," J. Opt. Soc. Am. B 27, 1-9 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993).
  2. M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995). [CrossRef]
  3. M. Mitchell, M. Segev, and D. C. Christodoulides, “Observation of multihump multimode solitons,” Phys. Rev. Lett. 80, 4657-4660 (1998). [CrossRef]
  4. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710-712 (2003). [CrossRef] [PubMed]
  5. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003). [CrossRef] [PubMed]
  6. Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27, 2019-2021 (2002). [CrossRef]
  7. D. Trager, N. Sagemerten, and C. Denz, “Guiding of dynamically modulated signals in arrays of photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 12, 383-387 (2006). [CrossRef]
  8. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006). [CrossRef]
  9. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett. 24, 77-79 (1999). [CrossRef]
  10. M.-F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091-3101 (1997). [CrossRef]
  11. W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518-519 (1978). [CrossRef]
  12. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004-1006 (1998). [CrossRef]
  13. R. Regener and W. Sohler, “Efficient second-harmonic generation in Ti:LiNbO3 channel waveguide resonators,” J. Opt. Soc. Am. B 5, 267-277 (1988). [CrossRef]
  14. R. Schiek, Y. Baek, and G. I. Stegeman, “Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B 15, 2255-2568 (1998). [CrossRef]
  15. G. Assanto and G. I. Stegeman, “Simple physics of quadratic spatial solitons,” Opt. Express 10, 388-396 (2002). [PubMed]
  16. A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19, 1612-1614 (1994). [CrossRef] [PubMed]
  17. S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610-1612 (1996). [CrossRef]
  18. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004). [CrossRef]
  19. C. Lou, J. Xu, H. Qiao, X. Zhang, Y. Chen, and Z. Chen, “Enhanced second-harmonic generation by means of high power confinement in a photovoltaic soliton-induced waveguide,” Opt. Lett. 29, 953-955 (2004). [CrossRef] [PubMed]
  20. J. Liu and L. Keqing, “Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection,” J. Opt. Soc. Am. B 16, 550-555 (1999). [CrossRef]
  21. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995). [CrossRef] [PubMed]
  22. S. Lan, M.-F. Shih, G. Mizell, J. A. Giordmaine, Z. Chen, C. Anastassiou, J. Martin, and M. Segev, “Second-harmonic generation in waveguides induced by photorefractive spatial solitons,” Opt. Lett. 24, 1145-1147 (1999). [CrossRef]
  23. A. D. Boardman, W. Ileki, and Y. Liu, “Spatial solitons in a photorefractive medium sustaining second-harmonic generation,” J. Opt. Soc. Am. B 19, 832-838 (2002). [CrossRef]
  24. R. L. Byer, Y. K. Park, R. S. Feigelson, and W. L. Kway, “Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3,” Appl. Phys. Lett. 39, 17-19 (1981). [CrossRef]
  25. N. Uesugi, K. Daikoku, and K. Kubota, “Electric field tuning of second-harmonic generation in a three-dimensional LiNbO3 optical waveguide,” Appl. Phys. Lett. 34, 60-62 (1979). [CrossRef]
  26. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993). [CrossRef]
  27. D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628-1633 (1995). [CrossRef]
  28. M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005). [CrossRef] [PubMed]
  29. R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966). [CrossRef]
  30. T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003). [CrossRef]
  31. A. W. Snyder, S. J. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297-6300 (1995). [CrossRef]
  32. N. Fressengeas, M. Maufoy, and K. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996). [CrossRef]
  33. K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006). [CrossRef]
  34. F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007). [CrossRef]
  35. F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066-2070 (1995). [CrossRef]
  36. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391-407 (1997). [CrossRef]
  37. M. Carrascosa, J. Villaroel, J. Carnicero, A. Garcia-Cabanes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115-120 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited