OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 128–131

Generation of intense frequency-tunable few-cycle femtosecond pulses in hollow fiber

Fengjiao Zhong, Hongbing Jiang, and Qihuang Gong  »View Author Affiliations


JOSA B, Vol. 27, Issue 1, pp. 128-131 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000128


View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically show an approach to generate intense frequency-tunable few-cycle femtosecond pulses by molecular phase modulation combined with self-phase modulation. An intense pump pulse propagates through a gas-filled hollow fiber to excite alignment of the gas molecule, which induces temporal modulation of the refractive index. Then the spectrum of a time-delayed intense probe pulse is continuously tuned by the alignment and broadened simultaneously by self-phase modulation. The modification to the pump-induced alignment by the intense probe pulse is considered. Frequency-tunable intense few-cycle pulses in the visible and near-infrared spectrum range are obtained using initial 20 fs , 800 nm pulses.

© 2009 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.7090) Ultrafast optics : Ultrafast lasers
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 15, 2009
Manuscript Accepted: November 18, 2009
Published: December 24, 2009

Citation
Fengjiao Zhong, Hongbing Jiang, and Qihuang Gong, "Generation of intense frequency-tunable few-cycle femtosecond pulses in hollow fiber," J. Opt. Soc. Am. B 27, 128-131 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-1-128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Zewail, “Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states,” J. Phys. Chem. 100, 12701-12724 (1996). [CrossRef]
  2. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001). [CrossRef] [PubMed]
  3. V. Malka, S. Fritzler, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, “Electron acceleration by a wake field forced by an intense ultrashort laser pulse,” Science 298, 1596-1600 (2002). [CrossRef] [PubMed]
  4. G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, G. Tempea, F. Krausz, and K. Ferencz, “Mirror-dispersion-controlled sub-10-fs optical parametric amplifier in the visible,” Opt. Lett. 24, 1529-1531 (1999). [CrossRef]
  5. G. Cirmi, C. Manzoni, D. Brida, S. De Silvestri, and G. Cerullo, “Carrier-envelope phase stable, few-optical-cycle pulses tunable from visible to near IR,” J. Opt. Soc. Am. B 25, B62-B69 (2008). [CrossRef]
  6. N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. M. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74, 036617 (2006). [CrossRef]
  7. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006). [CrossRef] [PubMed]
  8. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 3330-3332 (2007). [CrossRef] [PubMed]
  9. N. Zhavoronkov and G. Korn, “Generation of single intense short optical pulses by ultrafast molecular phase modulation,” Phys. Rev. Lett. 88, 203901 (2002). [CrossRef] [PubMed]
  10. R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kateyn, “Phase modulation of ultrashort light pulses using molecular rotational wave packets,” Phys. Rev. Lett. 88, 013903 (2002). [CrossRef] [PubMed]
  11. Zhong Fengjiao, Jiang Hongbing, and Gong Qihuang, “Tuning the frequency of few-cycle femtosecond laser pulses by molecular phase modulation,” Opt. Express 17, 1472-1477 (2009). [CrossRef]
  12. N. Milosevic, G. Tempea, and T. Brabec, “Optical pulse compression: bulk media versus hollow waveguides,” Opt. Lett. 25, 672-674 (2000). [CrossRef]
  13. A. V. Husakou, V. P. Kalosha, and J. Herrmann, “Supercontinuum generation and pulse compression in hollow waveguides,” Opt. Lett. 26, 1022-1024 (2001). [CrossRef]
  14. M. Spanner and Misha Yu. Ivanov, “Optimal generation of single-dispersion precompensated 1-fs pulses by molecular phase modulation,” Opt. Lett. 28, 576-578 (2003). [CrossRef] [PubMed]
  15. V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, “Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering,” Phys. Rev. Lett. 88, 103901 (2002). [CrossRef] [PubMed]
  16. V. P. Kalosha and J. Herrmann, “Ultrawide spectral broadening and compression of single extremely short pulses in the visible, UV-VUV, and middle infrared by high-order stimulated Raman scattering,” Phys. Rev. A 68, 023812 (2003). [CrossRef]
  17. P. E. Cidder, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566-1572 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited