OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 132–140

Two-photon assisted poling

Zouheir Sekkat  »View Author Affiliations

JOSA B, Vol. 27, Issue 1, pp. 132-140 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I develop a theory that predicts a two-photon-induced molecular polar order in solid polymers at a temperature far below the glass transition temperature of the polymer. Phenomenologically, the rotational mobility of the chromophores is enhanced during a two-photon isomerization process, allowing for polar order to build up in the presence of a dc field that is applied across the solid polymer. No (or negligible) poling is possible in the absence of two-photon isomerization. Using the formalism of Legendre polynomials solves the general equations of the theory, and analytical solutions are derived for the early time evolution and the steady state of this two-photon poling process. The effects of the poling parameters are discussed, and it is shown that the two-photon poling efficiency can be as high as that achieved by dc field poling at elevated temperatures.

© 2009 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(210.4810) Optical data storage : Optical storage-recording materials

ToC Category:
Nonlinear Optics

Original Manuscript: June 10, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 15, 2009
Published: December 24, 2009

Zouheir Sekkat, "Two-photon assisted poling," J. Opt. Soc. Am. B 27, 132-140 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zyss and D. S. Chemla, “Quadratic nonlinear optics and optimization of the second-order nonlinear optical response of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D.S.Chemla and J.Zyss, eds. (Academic, 1987), Vol. 1, p. 3.
  2. S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B 15, 257-265 (1998). [CrossRef]
  3. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 057402 (2004). [CrossRef] [PubMed]
  4. B. D. Davydov, L. D. Derkacheva, V. V. Dumina, M. E. Zhabostinskii, V. F. Zolin, L. G. Koreneva, and M. A. Sanokhina, “Charge transfer and harmonic generation in molecular crystals,” Opt. Spectrosc. (USSR) 30, 274-279 (1971).
  5. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31-55 (1994). [CrossRef]
  6. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  7. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  8. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106-1109 (2002). [CrossRef] [PubMed]
  9. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843-845 (1989). [CrossRef] [PubMed]
  10. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780-1782 (1991). [CrossRef] [PubMed]
  11. A. Toriumi, S. Kawata, and M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924-1926 (1998). [CrossRef]
  12. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  13. R. M. Williams, D. W. Piston, and W. W. Webb, “Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry,” FASEB J. 8, 804-813 (1994). [PubMed]
  14. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near infrared femtosecond laser pulses,” Opt. Lett. 26, 819-821 (2001). [CrossRef]
  15. N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, “Generation of calcium waves in living cells by pulsed-laser-induced photodisruption,” Appl. Phys. Lett. 79, 1208-1210 (2001). [CrossRef]
  16. I. Fucks-Janczarek, J-M. Nunzi, B. Sahraoui, I. V. Kityk, J. Berdowski, A. M. Caminade, J-P. Majoral, A. C. Martineau, P. Frere, and J. Roncali, “Third-order nonlinear optical properties and two-photon absorption in branched oligothienylenevinylenes,” Opt. Commun. 209, 461-466 (2002). [CrossRef]
  17. M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653-1656 (1998). [CrossRef] [PubMed]
  18. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690to1050 nm,” J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]
  19. S. Delysee, P. Raimond, and J. M. Nunzi, “Two-photon absorption in non centrosymmetric dyes,” Chem. Phys. 219, 341-351 (1997). [CrossRef]
  20. Z. Sekkat, H. Ishitobi, and S. Kawata, “Two-photon isomerization and orientation of photoisomers in thin films of polymer,” Opt. Commun. 222, 269-276 (2003). [CrossRef]
  21. H. Ishitobi, Z. Sekkat, and S. Kawata, “Ordering of azobenzenes by two-photon isomerization,” J. Chem. Phys. 25, 164718 (2006). [CrossRef]
  22. H. Ishitobi, Z. Sekkat, and S. Kawata, “Photo-orientation by multiphoton photoselection,” J. Opt. Soc. Am. B 23, 868-873 (2006). [CrossRef]
  23. M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85, 351-353 (2004). [CrossRef]
  24. Z. Sekkat, “Isomeric orientation by two-photon excitation: a theoretical study,” Opt. Commun. 229, 291-303 (2004). [CrossRef]
  25. C. R. Mendonca, U. M. Neves, L. De Boni, A. A. Andrade, D. S. dos Santos, Jr., F. J. Pavinatto, S. C. Zilio, L. Misoguti, and O. N. Oliveira, “Two-photon induced anisotropy in PMMA film doped with Disperse Red 13,” Opt. Commun. 273, 435-441 (2007). [CrossRef]
  26. A. M. Dubrovkin, Y. Jung, V. M. Kozenkov, S. A. Magnitskii, and N. M. Nagorskiy, “Nonlinear induced polarization dependent scattering in solid state azo-dye films,” Laser Phys. Lett. 4, 275-278 (2006). [CrossRef]
  27. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002), and references therein.
  28. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, “Light-induced orientation in azo-polyimide polymers 325 degreesC below the glass transition temperature,” J. Opt. Soc. Am. B 14, 829-833 (1997). [CrossRef]
  29. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604-1606 (1995). [CrossRef] [PubMed]
  30. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248-251 (1986). [CrossRef]
  31. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733-745 (1989). [CrossRef]
  32. Z. Sekkat and M. Dumont, “Photoassisted poling of azo dye doped polymeric films at room temperature,” Appl. Phys. B 54, 486-489 (1992). [CrossRef]
  33. Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric thin films: Theoretical study of steady state and transient properties,” J. Opt. Soc. Am. B 12, 1855-1867 (1995). [CrossRef]
  34. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, and R. D. Miller, “Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain,” J. Opt. Soc. Am. B 13, 1713-1724 (1996). [CrossRef]
  35. R. A. Hill, S. Dreher, A. Knoesen, and D. Yankelevich, “Optically initiated electric field poling of nonlinear polymers,” Appl. Phys. Lett. 66, 2156-2158 (1995). [CrossRef]
  36. A. Donval, E. Toussaere, S. Brasselet, and J. Zyss, “Comparative assessment of electrical, photoassisted and all optical in-plane poling of polymer based electrooptic modulators,” Opt. Mater. 12, 215-221 (1999). [CrossRef]
  37. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second-harmonic generation in azo-dye polymers,” Opt. Lett. 18, 941-243 (1993). [CrossRef] [PubMed]
  38. C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, “Quasi-permanent all-optical encoding of noncentrosymmetry in azo-dye polymers,” J. Opt. Soc. Am. B 14, 1984-1996 (1997). [CrossRef]
  39. J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, “Transient optically induced non-centrosymmetry in a solution of octupolar molecules,” Chem. Phys. Lett. 219, 349-357 (1994). [CrossRef]
  40. S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B 15, 257-269 (1998). [CrossRef]
  41. Z. Sekkat, “Photo-orientation by photoisomerization,” in Photoreactive Organic Thin Films (Academic, 2002),Chapt. 3, pp. 63-104. [CrossRef]
  42. Z. Sekkat, D. Yasumatsu, and S. Kawata, “Pure photo-orientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers,” J. Phys. Chem. B 106, 12407-12417 (2002). [CrossRef]
  43. H. Ishitobi, Z. Sekkat, and S. Kawata, “Quantifying theory of optical orientation processes in spectrally distinguishable photoisomers: application to a spiropyran-type chromophore,” Chem. Phys. Lett. 316, 578-584 (2000). [CrossRef]
  44. Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the trans-cis photoisomerization,” J. Phys. Chem. 99, 17226-17234 (1995). [CrossRef]
  45. Z. Sekkat, and M. Dumont, “Photoinduced orientation of azo dye in polymeric films: Characterization of angular molecular mobility,” Synth. Met. 54, 373-381 (1993). [CrossRef]
  46. Z. Sekkat and W. Knoll, “Stationary-state and dynamics of birefringence and nonlinear optical properties induced by electric field poling in polymeric films,” Ber. Bunsenges. Phys. Chem. 98, 1231-1242 (1994).
  47. M. G. Kuzyk, R. C. Moore, and L. A. King, “Second-harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix,” J. Opt. Soc. Am. B 7, 64-76 (1990). [CrossRef]
  48. S. P. Bian, D. Robinson, and M. G. Kuzyk, “Optically activated cantilever using photomechanical effects in dye doped polymer fibers,” J. Opt. Soc. Am. B 23, 697-707 (2006). [CrossRef]
  49. R. Raschella, I. G. Marino, C. Razzetti, D. Bersani, and P. P. Lottici, “Modeling and experimental study of photoinduced anisotropy in hybrid solgel films,” J. Opt. Soc. Am. B 24, 504-514 (2007). [CrossRef]
  50. L. T. Thieghi, F. Batalioto, I. H. Bechtold, L. R. Evangelista, V. Zucolotto, D. T. Balogh, O. N. Oliveira, Jr., and E. A. Oliveira, “Phenomenological analysis of the light intensity dependence of the photoalignment process in azo-containing polymeric films,” Phys. Rev. E 74, 011802 (2006). [CrossRef]
  51. K. Yang, S. Yang, and J. Kumar, “Formation mechanism of surface relief structures on amorphous azopolymer films,” Phys. Rev. B 73, 165204 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited