OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 38–44

Depolarization induced by pump edge effects in high average power laser rods

Yaakov Lumer, Inon Moshe, Steven Jackel, Zvi Horvitz, Avi Meir, Revital Feldman, and Yehoshua Shimony  »View Author Affiliations

JOSA B, Vol. 27, Issue 1, pp. 38-44 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Non-radially symmetric residual birefringence in laser rods due to pump edge effects is analyzed both theoretically and experimentally. For cubic crystals such as yttrium aluminum garnet (YAG), this depolarization has a unique sixfold symmetry that is closely connected to the crystal’s cubic symmetry. While this depolarization is small compared to that observed with linear or circular polarizations, it is measurable and important when using radial or azimuthal polarizations in rods generating heat powers in excess of 70 W/cm. A simple criterion was defined in order to help estimate the amount of depolarization in a high-power laser rod system.

© 2009 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects
(260.1440) Physical optics : Birefringence

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 16, 2009
Revised Manuscript: October 18, 2009
Manuscript Accepted: October 28, 2009
Published: December 14, 2009

Yaakov Lumer, Inon Moshe, Steven Jackel, Zvi Horvitz, Avi Meir, Revital Feldman, and Yehoshua Shimony, "Depolarization induced by pump edge effects in high average power laser rods," J. Opt. Soc. Am. B 27, 38-44 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Foster and L. M. Osterink, “Thermal effects in Nd:YAG laser,” J. Appl. Phys. 41, 3656-3663 (1970). [CrossRef]
  2. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557-566 (1970). [CrossRef]
  3. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807-809 (2003). [CrossRef] [PubMed]
  4. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2<10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32, 47-49 (2007). [CrossRef]
  5. A. Montmerie Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersse, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259, 223-235 (2006). [CrossRef]
  6. J. Bourderionnet, A. Brignon, J.-P. Huignard, and R. Frey, “Influence of aberrations on fundamental mode of high power rod solid-state lasers,” Opt. Commun. 204, 299-310 (2002). [CrossRef]
  7. M. S. Roth, V. Romano, T. Feurer, and T. Graf, “Self-compensating amplifier design for cw and Q-switched high-power Nd:YAG lasers,” Opt. Express 14, 2191-2196 (2006). [CrossRef] [PubMed]
  8. M. Sovizi and R. Massudi, “Study of thermal effects, considering birefringence, on phase distortion of beam in a side pumped Nd:YAG rod using BEM,” Opt. Commun. 275, 206-212 (2007). [CrossRef]
  9. Z. Li, X. Huai, L. Wang, and Y. Tao, “Influence of longitudinal rise of coolant temperature on the thermal strain in a cylindrical laser rod,” Opt. Lett. 34, 187-189 (2009). [CrossRef] [PubMed]
  10. P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis of thermal focal length on Nd:YAG rods,” Appl. Opt. 46, 6655-6661 (2007). [CrossRef] [PubMed]
  11. I. Moshe and S. Jackel, “Influence of birefringence-induced bifocusing on optical beams,” J. Opt. Soc. Am. B 22, 1228-1235 (2005). [CrossRef]
  12. Y. Lumer, I. Moshe, A. Meir, Y. Paiken, G. Machavariani, and S. Jackel, “Effects of thermally induced aberrations on radially and azimuthally polarized beams,” J. Opt. Soc. Am. B 24, 2279-2286 (2007). [CrossRef]
  13. Y. Lumer, I. Moshe, Z. Horovitz, S. Jackel, G. Machavariani, and A. Meir, “Thermally induced birefringence in nonsymmetrically pumped laser rods and its implications for attainment of good beam quality in high-power, radially polarized lasers,” Appl. Opt. 47, 3886-3891 (2008). [CrossRef] [PubMed]
  14. R. Feldman, Y. Shimony, E. Lebiush, and Y. Golan, “Effect of hot acid etching on the mechanical strength of ground YAG laser elements,” J. Phys. Chem. Solids 69, 839-846 (2008). [CrossRef]
  15. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758-766 (1971). [CrossRef]
  16. I. Mukhin, O. Palashov, and E. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496-5501 (2009). [CrossRef] [PubMed]
  17. Q. Lü, U. Wittrock, and S. Dong, “Photoelastic effect in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27, 95-101 (1995). [CrossRef]
  18. D. R. Lovett, Tensor Properties of Crystals (IOP, 1989).
  19. M. Bass, Handbook of Optics (McGraw-Hill, 1995), Vol. II, Chap. 33.
  20. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (Dover, 1988).
  21. V. Parfenov, V. Shashkin, and E. Stepanov, “Numerical investigation of thermally induced birefringence in optical elements of solid-state lasers,” Appl. Opt. 32, 5243-5255 (1993). [CrossRef] [PubMed]
  22. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468-1470 (2007). [CrossRef] [PubMed]
  23. R. Martínez-Herrero, P. M. Mejías, G. Piquero, and V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976-1980 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited