OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 51–58

Design of photonic bandgap fibers by topology optimization

Maria B. Dühring, Ole Sigmund, and Thomas Feurer  »View Author Affiliations


JOSA B, Vol. 27, Issue 1, pp. 51-58 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000051


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method based on topology optimization is presented to design the cross section of hollow-core photonic bandgap fibers for minimizing energy loss by material absorption. The optical problem is modeled by the time-harmonic wave equation and solved with the finite element program Comsol Multiphysics. The optimization is based on continuous material interpolation functions between the refractive indices and is carried out by the method of moving asymptotes. An example illustrates the performance of the method where air and silica are redistributed around the core so that the overlap between the magnetic field distribution and the lossy silica material is reduced and the energy flow is increased 375% in the core. Simplified designs inspired from optimized geometry are presented, which will be easier to fabricate. The energy flow is increased up to almost 300% for these cases.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: August 3, 2009
Manuscript Accepted: September 17, 2009
Published: December 17, 2009

Citation
Maria B. Dühring, Ole Sigmund, and Thomas Feurer, "Design of photonic bandgap fibers by topology optimization," J. Opt. Soc. Am. B 27, 51-58 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-1-51


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423-438 (1977). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  4. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699-702 (1996). [CrossRef]
  5. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).
  6. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  7. S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46-48 (1999). [CrossRef]
  8. R. Syms and J. Cozens, Optical Guided Waves and Devices, 1st ed. (McGraw-Hill, 1992).
  9. P. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003). [CrossRef] [PubMed]
  10. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  11. D. Torres, O. Weisberg, G. Shapira, C. Anastassiou, B. Temelkuran, M. Shurgalin, S. A. Jacobs, R. U. Ahmad, T. Wang, U. Kolodny, S. M. Shapshay, Z. Wang, A. K. Devaiah, U. D. Upadhyay, and J. A. Koufman, “OmniGuide photonic bandgap fibers for flexible delivery of CO2 laser energy for laryngeal and airway surgery,” Proc. SPIE 5686, 310-321 (2005). [CrossRef]
  12. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fiber,” Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  13. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, “Designing air-core photonic-bandgap fibers free of surface modes,” IEEE J. Quantum Electron. 40, 551-556 (2004). [CrossRef]
  14. P. J. Roberts, F. Couney, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  15. J. Hu and C. R. Menyuk, “Use of fingers in the core to reduce leakage loss in air-core photonic bandgap fibers,” in Proceedings of Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OML6. [PubMed]
  16. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577-17586 (2007). [CrossRef] [PubMed]
  17. T. Murao, K. Saitoh, and M. Koshiba, “Structural optimization of air-guiding photonic bandgap fibers for realizing ultimate low loss waveguides,” J. Lightwave Technol. 26, 1602-1612 (2008). [CrossRef]
  18. M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comput. Methods Appl. Mech. Eng. 71, 197-224 (1988). [CrossRef]
  19. M. P. Bendsøe and O. Sigmund, Topology Optimization, Theory, Methods and Applications (Springer, 2003).
  20. S. J. Cox and D. C. Dobson, “Maximizing band gaps in two-dimensional photonic crystals,” SIAM J. Appl. Math. 59, 2108-2120 (1999). [CrossRef]
  21. O. Sigmund and J. S. Jensen, “Systematic design of phononic bandgap materials and structures by topology optimization,” Philos. Trans. R. Soc. London, Ser. A 361, 1001-1019 (2003). [CrossRef]
  22. O. Sigmund and K. Hougaard, “Geometrical properties of optimal photonic crystals,” Phys. Rev. Lett. 100, 153904 (2008). [CrossRef] [PubMed]
  23. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high bandwidth low loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191-1198 (2005). [CrossRef]
  24. Y. Tsuji, K. Hirayama, T. Nomura, K. Sato, and S. Nishiwaki, “Design of optical circuit devices based on topology optimization,” IEEE Photonics Technol. Lett. 18, 850-852 (2006). [CrossRef]
  25. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996-2001 (2004). [CrossRef] [PubMed]
  26. P. I. Borel, L. H. Frandsen, A. Harpøth, M. Kristensen, J. S. Jensen, and O. Sigmund, “Topology optimized broadband photonic crystal Y-splitter,” Electron. Lett. 41, 69-71 (2005). [CrossRef]
  27. R. Stainko and O. Sigmund, “Tailoring dispersion properties of photonic crystal waveguides by topology optimization,” Waves Random Complex Media 17, 477-489 (2007). [CrossRef]
  28. J. Riishede and O. Sigmund, “Inverse design of dispersion compensating optical fiber using topology optimization,” J. Opt. Soc. Am. B 25, 88-97 (2008). [CrossRef]
  29. COMSOL Reference Manual for COMSOL 3.5. COMSOL AB, Stockholm, www.comsol.se.
  30. D. A. Tortorelli and P. Michaleris, “Design sensitivity analysis: overview and review,” Inverse Probl. Sci. Eng. 1, 71-105 (1994). [CrossRef]
  31. L. H. Olesen, F. Okkels, and H. Bruus, “A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow,” Int. J. Numer. Methods Eng. 65, 975-1001 (2006). [CrossRef]
  32. K. Svanberg, “The method of moving asymptotes--a new method for structural optimization,” Int. J. Numer. Methods Eng. 24, 359-373 (1987). [CrossRef]
  33. O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401-424 (2007). [CrossRef]
  34. M. B. Dühring, J. S. Jensen, and O. Sigmund, “Acoustic design by topology optimization,” J. Sound Vib. 317, 557-575 (2008). [CrossRef]
  35. www.rsoftdesign.com.
  36. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277-8285 (2005). [CrossRef] [PubMed]
  37. O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mech. Sin. 25, 227-239 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited