OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 1 — Jan. 1, 2010
  • pp: 99–106

Self-similar solitary waves in Bessel optical lattices

Siliu Xu, Jianchu Liang, and Lin Yi  »View Author Affiliations


JOSA B, Vol. 27, Issue 1, pp. 99-106 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000099


View Full Text Article

Enhanced HTML    Acrobat PDF (865 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analytical solitary wave solution to the generalized nonlinear Schrödinger equation (NLSE) with varying coefficients in Bessel optical lattices is obtained based on the self-similar method. Our results indicate that a new family of Bessel (BSL) self-similar spatial solitons can be formed in the Kerr nonlinear media in the confined cylindrical symmetric geometry in sizes. These soliton profiles are rather stable, independent of propagation distance.

© 2009 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 2, 2009
Revised Manuscript: November 2, 2009
Manuscript Accepted: November 3, 2009
Published: December 24, 2009

Citation
Siliu Xu, Jianchu Liang, and Lin Yi, "Self-similar solitary waves in Bessel optical lattices," J. Opt. Soc. Am. B 27, 99-106 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-1-99


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Karpman, Non-Linear Waves in Dispersive Media (Pergamon, 1975).
  2. S. M. Richardson, Fluid Mechanics (Hemisphere Publishing Corp., 1989).
  3. G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge Univ. Press, 1996).
  4. C. H. Tenorio, E. V. Vargas, V. N. Serkin, M. A. Granados, T. L. Belyaeva, R. P. Moreno, and L. M. Lara, “Dynamics of solitons in the model of nonlinear Schrödinger equation with an external harmonic potential,” IEEE J. Quantum Electron. 35, 778-786 (2005). [CrossRef]
  5. S. An and J. E. Sipe, “Self-similarity in transient stimulated Raman scattering,” Opt. Lett. 16, 1478-1480 (1991). [CrossRef] [PubMed]
  6. C. R. Menyuk, D. Levi, and P. Winternitz, “Self-similarity in transient stimulated Raman scattering,” Phys. Rev. Lett. 69, 3048-3051 (1992). [CrossRef] [PubMed]
  7. T. M. Monro, P. D. Millar, L. Poladian, and C. M. de Sterke, “Self-similar evolution of self-written waveguides,” Opt. Lett. 23, 268-270 (1998). [CrossRef]
  8. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185-1190 (1993). [CrossRef]
  9. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  10. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  11. M. Soljacic, M. Segev, and C. R. Menyuk, “Self-similarity and fractals in soliton-supporting systems,” Phys. Rev. E 61, R1048-R1051 (2000). [CrossRef]
  12. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003). [CrossRef] [PubMed]
  13. V. N. Serkin and A. Hasegawa, “Novel soliton solutions of the nonlinear Schrödinger equation model,” Phys. Rev. Lett. 85, 4502-4505 (2000). [CrossRef] [PubMed]
  14. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794-796 (1988). [CrossRef] [PubMed]
  15. S. A. Ponomarenko and G. P. Agrawal, “Do solitonlike self-similar waves exist in nonlinear optical media?” Phys. Rev. Lett. 97, 013901 (2006). [CrossRef] [PubMed]
  16. S. H. Chen, L. Yi, D. S. Guo, and P. X. Lu, “Chirped self-similar solutions of a generalized nonlinear Schrödinger equation model,” Phys. Rev. E 71, 016606 (2005). [CrossRef]
  17. S. H. Chen and L. Yi, “Self-similar evolutions of parabolic, Hermite-Gaussian, and hybrid optical pulses: Universality and diversity,” Phys. Rev. E 72, 016622 (2005). [CrossRef]
  18. W. P. Zhong and L. Yi, “Two-dimensional Laguerre-Gaussian soliton family in strongly nonlocal nonlinear media,” Phys. Rev. A 75, 061801 (2007). [CrossRef]
  19. W. P. Zhong, L. Yi, R. H. Xie, M. Belic, and G. Chen, “Three-dimensional spatial soliton clusters in strongly nonlocal media,” J. Phys. B 41, 025402 (2008). [CrossRef]
  20. R. Morandotti, U. Peschel, and J. S. Aitchison, “Dynamics of discrete solitons in optical waveguide arrays,” Phys. Rev. Lett. 83, 2726-2729 (1999). [CrossRef]
  21. B. A. Malomed and P. G. Kevrekidis, “Discrete vortex solitons,” Phys. Rev. E 64, 026601 (2001). [CrossRef]
  22. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton trains in photonic lattices,” Opt. Express 12, 2831-2837 (2004). [CrossRef] [PubMed]
  23. N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen, and M. Segev, “Two-dimensional optical lattice solitons,” Phys. Rev. Lett. 91, 213906-213909 (2003). [CrossRef] [PubMed]
  24. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004). [CrossRef] [PubMed]
  25. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710-712 (2003). [CrossRef] [PubMed]
  26. Z. Chen, H. Martin, E. D. Eugenieva, J. J. Xu, and A. Bezryadina1, “Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,” Phys. Rev. Lett. 92, 143902 (2004). [CrossRef] [PubMed]
  27. J. Yang, Z. H. Musslimani, and H. Ziad, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. 28, 2094-2096 (2003). [CrossRef] [PubMed]
  28. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Rotary solitons in bessel optical lattices,” Phys. Rev. Lett. 93, 093904 (2004). [CrossRef] [PubMed]
  29. J. Liang, H. Liu, F. Liu, and L. Yi, “Analytical solutions to the fully extended nonlinear Schrödinger equation,” J. Phys. A: Math. Theor. 42, 335204 (2009). [CrossRef]
  30. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863 (2000). [CrossRef] [PubMed]
  31. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett. 88, 093901 (2002). [CrossRef] [PubMed]
  32. D. Träger, R. Fischer, D. N. Neshev, A. A. Sukhorukov, C. Denz, W. Krlikowski, and Y. S. Kivshar, “Nonlinear Bloch modes in two-dimensional photonic lattices,” Opt. Express 14, 1913-1919 (2006). [CrossRef] [PubMed]
  33. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Stable ring-profile vortex solitons in Bessel optical lattices,” Phys. Rev. Lett. 94, 043902 (2005). [CrossRef] [PubMed]
  34. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003). [CrossRef] [PubMed]
  35. Y. V. Kartashov, A. S. Zelenina, L. Torner, and V. A. Vysloukh, “Spatial soliton switching in quasi-continuous optical arrays,” Opt. Lett. 24, 766-768 (2004). [CrossRef]
  36. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, III, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28, 2183-2185 (2003). [CrossRef] [PubMed]
  37. A. M. Glass and J. Strait, “The photorefractive effect in semiconductors,” in Photorefractive Materials and their Applications I, P.Gunter and J.P.Huignard, eds. (Springer, 1988), p. 237(R)C262.
  38. A. S. Desyatnikov, D. Neshev, E. A. Ostrovskaya, and Y. S. Kivshar, “Multipole composite spatial solitons: theory and experiment,” J. Opt. Soc. Am. B 19, 586-595 (2002). [CrossRef]
  39. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Topological dragging of solitons,” Phys. Rev. Lett. 95, 243902 (2005). [CrossRef] [PubMed]
  40. L. Dong, H. Wang, W. Zhou, X. Yang, X. Lv, and H. Ch, “Necklace solitons and ring solitons in Bessel optical lattices,” Opt. Express 16, 5649-5655 (2008). [CrossRef] [PubMed]
  41. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable spatiotemporal solitons in Bessel optical lattices,” Phys. Rev. Lett. 95, 023902 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited