OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 1937–1941

Embedded air core optical nano-waveguides

Soon Thor Lim, Ching Eng Png, and Aaron J. Danner  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 1937-1941 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001937


View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a nanometer-scale hollow core waveguide that can be fabricated with standard methods on a silicon-on-insulator substrate. High optical confinement in the core is possible, making such a waveguide structure suitable for sensing applications, applications making use of strong optical nonlinearities, and optofluidics applications. We extend a historical method (Marcatili’s method) to provide analytical solutions for field distributions in the device and simulate power confinement, intensity, and parametric dependencies with beam propagation and finite-difference time-domain methods for two polarizations. In an example worked out, the optical confinement in the air core is 40 % of the total waveguide power, which is favorable to that of a standard slot waveguide. The intensity per μ m 2 in the hollow core is 95% higher than in the silicon cladding region, indicating that avoiding optical nonlinearities is also possible.

© 2010 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

History
Original Manuscript: April 29, 2010
Revised Manuscript: August 4, 2010
Manuscript Accepted: August 9, 2010
Published: September 2, 2010

Citation
Soon Thor Lim, Ching Eng Png, and Aaron J. Danner, "Embedded air core optical nano-waveguides," J. Opt. Soc. Am. B 27, 1937-1941 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-1937


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single mode and polarisation independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol. 23, 2103–2111 (2005). [CrossRef]
  2. W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12, 6446–6455 (2004). [CrossRef] [PubMed]
  3. D. Yin, J. P. Barber, A. R. Hawkins, D. W. Dreamer, and H. Schmidt, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85, 3477–3479 (2004). [CrossRef]
  4. S. T. Lim, Y. L. Ang, C. E. Png, and E. A. Ong, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15, 11061–11072 (2007). [CrossRef] [PubMed]
  5. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef] [PubMed]
  6. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59–61 (2006). [CrossRef] [PubMed]
  7. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef] [PubMed]
  8. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88, 111107 (2006). [CrossRef]
  9. C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26, 1524–1531 (2008). [CrossRef]
  10. E. A. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
  11. C. A. Barrios, “High-performance all optical silicon microswitch,” Electron. Lett. 40, 862–863 (2004). [CrossRef]
  12. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007). [CrossRef] [PubMed]
  13. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008). [CrossRef] [PubMed]
  14. R. Guider, N. Daldosso, A. Pitanti, E. Jordana, J.-M. Fedeli, and L. Pavesi, “NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators,” Opt. Express 17, 20762–20770 (2009). [CrossRef] [PubMed]
  15. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14, 9197–9202 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited