OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 1942–1946

Modification of spontaneous emission from quantum dots by the surface of a three-dimensional photonic crystal

Gui-Qiang Liu, Yu-Bo Liao, Shan-Jun Ma, Yan-Fei Shen, and Zhi-Qing Ye  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 1942-1946 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The emission behaviors of CdSe/ZnS core-shell quantum dots (QDs) in proximity to the surface of a three-dimensional photonic crystal (PC) are investigated experimentally and theoretically. Results show that the spontaneous emission (SE) of QDs in such a structure presents a damped periodic oscillation with the distance between QDs and the PC surface, and the most significant modification always appears in the short-wavelength region, resulting from the coefficient of surface modes and interference between the direct SE field and the reflected SE field. These display a wide range of novel optical properties for many applications in optoelectronic devices.

© 2010 Optical Society of America

OCIS Codes
(300.2140) Spectroscopy : Emission
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(160.5293) Materials : Photonic bandgap materials
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: May 18, 2010
Manuscript Accepted: July 23, 2010
Published: September 2, 2010

Gui-Qiang Liu, Yu-Bo Liao, Shan-Jun Ma, Yan-Fei Shen, and Zhi-Qing Ye, "Modification of spontaneous emission from quantum dots by the surface of a three-dimensional photonic crystal," J. Opt. Soc. Am. B 27, 1942-1946 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. M. S. Kumar, S. Menabde, S. Yu, and N. Park, “Directional emission from photonic crystal waveguide terminations using particle swarm optimization,” J. Opt. Soc. Am. B 27, 343–349 (2010). [CrossRef]
  3. K. Ishizaki, M. Okano, and S. Noda, “Numerical investigation of emission in finite-sized, three-dimensional photonic crystals with structural fluctuations,” J. Opt. Soc. Am. B 26, 1157–1161 (2009). [CrossRef]
  4. J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515 (2000). [CrossRef]
  5. Y. Liu, C. Jiang, Y. Lin, and W. Xu, “Slow-light enhancement of stimulated emission of atomic systems in photonic crystals,” J. Opt. Soc. Am. B 27, 442–446 (2010). [CrossRef]
  6. Y. Lin, J. Zhang, E. H. Sargent, and E. Kumacheva, “Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal,” Appl. Phys. Lett. 81, 3134–3136 (2002). [CrossRef]
  7. C. Blum, A. P. Mosk, C. Otto, W. L. Vos, and V. Subramaniam, “Spectral emission imaging to map photonic properties below the crystal surface of 3D photonic crystals,” J. Opt. Soc. Am. B 26, 2101–2108 (2009). [CrossRef]
  8. H. M. Yates, W. R. Flavell, M. E. Pemble, M. P. Johnson, S. G. Romanov, and C. M. Sotomayor Torres, “Novel quantum confined structures via atmospheric pressure MOCVD growth in asbestos and opals,” J. Cryst. Growth 170, 611–615 (1997). [CrossRef]
  9. A. Blanco, C. Lopez, R. Mayoral, H. Miguex, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781–1783 (1998). [CrossRef]
  10. V. N. Bogomolov, A. V. Prokofiev, S. M. Samoilovich, E. P. Petrov, A. M. Kapotonov, and S. V. Gaponeneko, “Photonic band gap effect in a solid state cluster lattice,” J. Lumin. 72–74, 391–392 (1997). [CrossRef]
  11. T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres,” Appl. Phys. Lett. 72, 1957–1959 (1998). [CrossRef]
  12. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponeneko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998). [CrossRef]
  13. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007). [CrossRef]
  14. G. Q. Liu, Y. B. Liao, and X. Y. Tao, “Characteristic of spontaneous emission form CdSe/ZnS core-shell quantum dots near the surface of self-assembled three-dimensional photonic crystals,” J. Mod. Opt. (2010), doi: 10.1080/09500341003605403. [CrossRef]
  15. G. Q. Liu, Y. B. Liao, Z. M. Liu, and Y. Chen, “Characteristic investigation of high quality three-dimensional photonic crystals fabricated by self-assembly: theory analysis, simulation and measurement,” J. Opt. A, Pure Appl. Opt. 10, 115202 (2008). [CrossRef]
  16. G. Q. Liu, Z. S. Wang, and Y. H. Ji, “Influence of growth parameters on the fabrication of high-quality colloidal crystals via a controlled evaporation self-assembly method,” Thin Solid Films 518, 5083–5090 (2010). [CrossRef]
  17. R. Pozas, A. Mihi, M. Ocaña, and H. Míguez, “Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating,” Adv. Mater. 18, 1183–1187 (2006). [CrossRef]
  18. G. Q. Liu, Y. Chen, and Z. Q. Ye, “Engineering a light-emitting planar defect within three-dimensional photonic crystals,” Sci. Technol. Adv. Mater. 10, 055001 (2009). [CrossRef]
  19. A. Vredenberg, N. Hunt, E. Schubert, D. Jachobson, J. Poate, and G. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993). [CrossRef] [PubMed]
  20. P. Worthing, R. Amos, and W. Barnes, “Modification of the spontaneous emission rate of Er3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59, 865–872 (1999). [CrossRef]
  21. R. Palmer, D. Stein, E. Abrahams, and P. Andersen, “Models of hierarchically constrained dynamics for glassy relaxation,” Phys. Rev. Lett. 53, 958–961 (1984). [CrossRef]
  22. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005). [CrossRef] [PubMed]
  23. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004). [CrossRef]
  24. S. G. Romanov, M. Bardosova, I. M. Povey, C. M. Sotomayor Torres, M. E. Pemble, N. Gaponik, and A. Eychmüller, “Modification of emission of CdTe nanocrystals by the local field of Langmuir–Blodgett colloidal photonic crystals,” J. Appl. Phys. 104, 103118 (2008). [CrossRef]
  25. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009). [CrossRef] [PubMed]
  26. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991). [CrossRef]
  27. F. R. Mendieta and P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999). [CrossRef]
  28. X. Zhang, L.-M. Li, Z.-Q. Zhang, and C. T. Chan, “Surface states in two-dimensional metallodielectric photonic crystals studied by a multiple-scattering method,” Phys. Rev. B 63, 125114 (2001). [CrossRef]
  29. J. M. Elson and K. Halterman, “Local density of states analysis of surface wave modes on truncated photonic crystal surfaces with nonlinear material,” Opt. Express 12, 4855–4863 (2004). [CrossRef] [PubMed]
  30. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in finite and infinite photonic crystals: The recursive Green’s function technique,” Phys. Rev. B 72, 155117 (2005). [CrossRef]
  31. A. I. Rahachou and I. V. Zozoulenko, “Waveguiding properties of surface states in photonic crystals,” J. Opt. Soc. Am. B 23, 1679–1683 (2006). [CrossRef]
  32. J. D. Joannopoulos, S. D. Johonson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton U. Press, 2007), pp. 89–92.
  33. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Backward surface waves at photonic crystals,” Phys. Rev. Lett. 75, 245116 (2007).
  34. Y. Xu and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 1438–1442 (2000). [CrossRef]
  35. C. Hermann and O. Hess, “Modified spontaneous emission rate in an inverted opal structure with complete photonic bandgap,” J. Opt. Soc. Am. B 19, 3013–3018 (2002). [CrossRef]
  36. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission in the near field of two-dimensional photonic crystals,” Opt. Lett. 30, 3210–3212 (2005). [CrossRef] [PubMed]
  37. E. Snoeks, A. Langendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74, 2459–2462 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited